Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Constructing proxy records from age models (COPRA)

2012, Breitenbach, S.F.M., Rehfeld, K., Goswami, B., Baldin, J.U.L., Ridley, H.E., Kennett, D.J., Prufer, K.M., Aquino, V.V., Asmerom, Y., Polyak, V.J., Cheng, H., Kurths, J., Marwan, N.

Reliable age models are fundamental for any palaeoclimate reconstruction. Available interpolation procedures between age control points are often inadequately reported, and very few translate age uncertainties to proxy uncertainties. Most available modeling algorithms do not allow incorporation of layer counted intervals to improve the confidence limits of the age model in question. We present a framework that allows detection and interactive handling of age reversals and hiatuses, depth-age modeling, and proxy-record reconstruction. Monte Carlo simulation and a translation procedure are used to assign a precise time scale to climate proxies and to translate dating uncertainties to uncertainties in the proxy values. The presented framework allows integration of incremental relative dating information to improve the final age model. The free software package COPRA1.0 facilitates easy interactive usage.

Loading...
Thumbnail Image
Item

Correlations between climate network and relief data

2014, Peron, T.K.D., Comin, C.H., Amancio, D.R., Da F. Costa, L., Rodrigues, F.A., Kurths, J.

In the last few years, the scientific community has witnessed an ongoing trend of using ideas developed in the study of complex networks to analyze climate dynamics. This powerful combination, usually called climate networks, can be used to uncover non-trivial patterns of weather changes throughout the years. Here we investigate the temperature network of the North American region and show that two network characteristics, namely degree and clustering, have marked differences between the eastern and western regions. We show that such differences are a reflection of the presence of a large network community on the western side of the continent. Moreover, we provide evidence that this large community is a consequence of the peculiar characteristics of the western relief of North America.

Loading...
Thumbnail Image
Item

Characterizing the evolution of climate networks

2014, Tupikina, L., Rehfeld, K., Molkenthin, N., Stolbova, V., Marwan, N., Kurths, J.

Complex network theory has been successfully applied to understand the structural and functional topology of many dynamical systems from nature, society and technology. Many properties of these systems change over time, and, consequently, networks reconstructed from them will, too. However, although static and temporally changing networks have been studied extensively, methods to quantify their robustness as they evolve in time are lacking. In this paper we develop a theory to investigate how networks are changing within time based on the quantitative analysis of dissimilarities in the network structure. Our main result is the common component evolution function (CCEF) which characterizes network development over time. To test our approach we apply it to several model systems, ErdA's-Rényi networks, analytically derived flow-based networks, and transient simulations from the START model for which we control the change of single parameters over time. Then we construct annual climate networks from NCEP/NCAR reanalysis data for the Asian monsoon domain for the time period of 1970-2011 CE and use the CCEF to characterize the temporal evolution in this region. While this real-world CCEF displays a high degree of network persistence over large time lags, there are distinct time periods when common links break down. This phasing of these events coincides with years of strong El Niño/Southern Oscillation phenomena, confirming previous studies. The proposed method can be applied for any type of evolving network where the link but not the node set is changing, and may be particularly useful to characterize nonstationary evolving systems using complex networks.