Search Results

Now showing 1 - 10 of 31
  • Item
    Synchronization of a Class of Memristive Stochastic Bidirectional Associative Memory Neural Networks with Mixed Time-Varying Delays via Sampled-Data Control
    (London : Hindawi Limited, 2018) Yuan, M.; Wang, W.; Luo, X.; Ge, C.; Li, L.; Kurths, J.; Zhao, W.
    The paper addresses the issue of synchronization of memristive bidirectional associative memory neural networks (MBAMNNs) with mixed time-varying delays and stochastic perturbation via a sampled-data controller. First, we propose a new model of MBAMNNs with mixed time-varying delays. In the proposed approach, the mixed delays include time-varying distributed delays and discrete delays. Second, we design a new method of sampled-data control for the stochastic MBAMNNs. Traditional control methods lack the capability of reflecting variable synaptic weights. In this paper, the methods are carefully designed to confirm the synchronization processes are suitable for the feather of the memristor. Third, sufficient criteria guaranteeing the synchronization of the systems are derived based on the derive-response concept. Finally, the effectiveness of the proposed mechanism is validated with numerical experiments.
  • Item
    Dynamics and collapse in a power system model with voltage variation: The damping effect
    (San Francisco, CA : Public Library of Science (PLoS), 2016) Ma, J.; Sun, Y.; Yuan, X.; Kurths, J.; Zhan, M.
  • Item
    Abrupt transitions in time series with uncertainties
    (London : Nature Publishing Group, 2018) Goswami, B.; Boers, N.; Rheinwalt, A.; Marwan, N.; Heitzig, J.; Breitenbach, S.F.M.; Kurths, J.
    Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Niño-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an 'uncertainty-aware' framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon.
  • Item
    When optimization for governing human-environment tipping elements is neither sustainable nor safe
    (London : Nature Publishing Group, 2018) Barfuss, W.; Donges, J.F.; Lade, S.J.; Kurths, J.
    Optimizing economic welfare in environmental governance has been criticized for delivering short-term gains at the expense of long-term environmental degradation. Different from economic optimization, the concepts of sustainability and the more recent safe operating space have been used to derive policies in environmental governance. However, a formal comparison between these three policy paradigms is still missing, leaving policy makers uncertain which paradigm to apply. Here, we develop a better understanding of their interrelationships, using a stylized model of human-environment tipping elements. We find that no paradigm guarantees fulfilling requirements imposed by another paradigm and derive simple heuristics for the conditions under which these trade-offs occur. We show that the absence of such a master paradigm is of special relevance for governing real-world tipping systems such as climate, fisheries, and farming, which may reside in a parameter regime where economic optimization is neither sustainable nor safe.
  • Item
    Semitensor Product Compressive Sensing for Big Data Transmission in Wireless Sensor Networks
    (London : Hindawi Limited, 2017) Peng, H.; Tian, Y.; Kurths, J.
    Big data transmission in wireless sensor network (WSN) consumes energy while the node in WSN is energy-limited, and the data transmitted needs to be encrypted resulting from the ease of being eavesdropped in WSN links. Compressive sensing (CS) can encrypt data and reduce the data volume to solve these two problems. However, the nodes in WSNs are not only energy-limited, but also storage and calculation resource-constrained. The traditional CS uses the measurement matrix as the secret key, which consumes a huge storage space. Moreover, the calculation cost of the traditional CS is large. In this paper, semitensor product compressive sensing (STP-CS) is proposed, which reduces the size of the secret key to save the storage space by breaking through the dimension match restriction of the matrix multiplication and decreases the calculation amount to save the calculation resource. Simulation results show that STP-CS encryption can achieve better performances of saving storage and calculation resources compared with the traditional CS encryption.
  • Item
    Quantifying the parameter dependent basin of the unsafe regime of asymmetric Lévy-noise-induced critical transitions
    (Dordrecht [u.a.] : Springer, 2021) Ma, Jinzhong; Xu, Yong; Li, Yongge; Tian, Ruilan; Ma, Shaojuan; Kurths, J.
    In real systems, the unpredictable jump changes of the random environment can induce the critical transitions (CTs) between two non-adjacent states, which are more catastrophic. Taking an asymmetric Lévy-noise-induced tri-stable model with desirable, sub-desirable, and undesirable states as a prototype class of real systems, a prediction of the noise-induced CTs from the desirable state directly to the undesirable one is carried out. We first calculate the region that the current state of the given model is absorbed into the undesirable state based on the escape probability, which is named as the absorbed region. Then, a new concept of the parameter dependent basin of the unsafe regime (PDBUR) under the asymmetric Lévy noise is introduced. It is an efficient tool for approximately quantifying the ranges of the parameters, where the noise-induced CTs from the desirable state directly to the undesirable one may occur. More importantly, it may provide theoretical guidance for us to adopt some measures to avert a noise-induced catastrophic CT. © 2021, The Author(s).
  • Item
    Interval stability for complex systems
    (Bristol : Institute of Physics Publishing, 2018) Klinshov, V.V.; Kirillov, S.; Kurths, J.; Nekorkin, V.I.
    Stability of dynamical systems against strong perturbations is an important problem of nonlinear dynamics relevant to many applications in various areas. Here, we develop a novel concept of interval stability, referring to the behavior of the perturbed system during a finite time interval. Based on this concept, we suggest new measures of stability, namely interval basin stability (IBS) and interval stability threshold (IST). IBS characterizes the likelihood that the perturbed system returns to the stable regime (attractor) in a given time. IST provides the minimal magnitude of the perturbation capable to disrupt the stable regime for a given interval of time. The suggested measures provide important information about the system susceptibility to external perturbations which may be useful for practical applications. Moreover, from a theoretical viewpoint the interval stability measures are shown to bridge the gap between linear and asymptotic stability. We also suggest numerical algorithms for quantification of the interval stability characteristics and demonstrate their potential for several dynamical systems of various nature, such as power grids and neural networks.
  • Item
    A unified and automated approach to attractor reconstruction
    (London : IOP, 2021) Kraemer, K. H.; Datseris, G.; Kurths, J.; Kiss, I. Z.; Ocampo-Espindola, J. L.; Marwan, N.
    We present a fully automated method for the optimal state space reconstruction from univariate and multivariate time series. The proposed methodology generalizes the time delay embedding procedure by unifying two promising ideas in a symbiotic fashion. Using non-uniform delays allows the successful reconstruction of systems inheriting different time scales. In contrast to the established methods, the minimization of an appropriate cost function determines the embedding dimension without using a threshold parameter. Moreover, the method is capable of detecting stochastic time series and, thus, can handle noise contaminated input without adjusting parameters. The superiority of the proposed method is shown on some paradigmatic models and experimental data from chaotic chemical oscillators.
  • Item
    Stability threshold approach for complex dynamical systems
    (Bristol : Institute of Physics Publishing, 2016) Klinshov, V.V.; Nekorkin, V.I.; Kurths, J.
  • Item
    Cartesian product of synchronization transitions and hysteresis
    (Bristol : Institute of Physics Publishing, 2017) Wang, C.; Zou, Y.; Guan, S.; Kurths, J.
    We present theoretical results when applying the Cartesian product of two Kuramoto models on different network topologies. By a detailed mathematical analysis, we prove that the dynamics on the Cartesian product graph can be described by the canonical equations as the Kuramoto model. We show that the order parameter of the Cartesian product is the product of the order parameters of the factors. On the product graph, we observe either continuous or discontinuous synchronization transitions. In addition, under certain conditions, the transition from an initially incoherent state to a coherent one is discontinuous, while the transition from a coherent state to an incoherent one is continuous, presenting a mixture state of first and second order synchronization transitions. Our numerical results are in a good agreement with the theoretical predictions. These results provide new insight for network design and synchronization control.