Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

An electronic analog of synthetic genetic networks

2011, Hellen, E.H., Volkov, E., Kurths, J., Dana, S.K.

An electronic analog of a synthetic genetic network known as the repressilator is proposed. The repressilator is a synthetic biological clock consisting of a cyclic inhibitory network of three negative regulatory genes which produces oscillations in the expressed protein concentrations. Compared to previous circuit analogs of the repressilator, the circuit here takes into account more accurately the kinetics of gene expression, inhibition, and protein degradation. A good agreement between circuit measurements and numerical prediction is observed. The circuit allows for easy control of the kinetic parameters thereby aiding investigations of large varieties of potential dynamics.

Loading...
Thumbnail Image
Item

Order patterns networks (orpan) - A method to estimate time-evolving functional connectivity from multivariate time series

2012, Schinkel, S., Zamora-López, G., Dimigen, O., Sommer, W., Kurths, J.

Complex networks provide an excellent framework for studying the function of the human brain activity. Yet estimating functional networks from measured signals is not trivial, especially if the data is non-stationary and noisy as it is often the case with physiological recordings. In this article we propose a method that uses the local rank structure of the data to define functional links in terms of identical rank structures. The method yields temporal sequences of networks which permits to trace the evolution of the functional connectivity during the time course of the observation. We demonstrate the potentials of this approach with model data as well as with experimental data from an electrophysiological study on language processing.