Search Results

Now showing 1 - 2 of 2
  • Item
    Recurrence networks-a novel paradigm for nonlinear time series analysis
    (College Park, MD : Institute of Physics Publishing, 2010) Donner, R.V.; Zou, Y.; Donges, J.F.; Marwan, N.; Kurths, J.
    This paper presents a new approach for analysing the structural properties of time series from complex systems. Starting from the concept of recurrences in phase space, the recurrence matrix of a time series is interpreted as the adjacency matrix of an associated complex network, which links different points in time if the considered states are closely neighboured in phase space. In comparison with similar network-based techniques the new approach has important conceptual advantages, and can be considered as a unifying framework for transforming time series into complex networks that also includes other existing methods as special cases. It has been demonstrated here that there are fundamental relationships between many topological properties of recurrence networks and different nontrivial statistical properties of the phase space density of the underlying dynamical system. Hence, this novel interpretation of the recurrence matrix yields new quantitative characteristics (such as average path length, clustering coefficient, or centrality measures of the recurrence network) related to the dynamical complexity of a time series, most of which are not yet provided by other existing methods of nonlinear time series analysis. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    A unified and automated approach to attractor reconstruction
    (London : IOP, 2021) Kraemer, K. H.; Datseris, G.; Kurths, J.; Kiss, I. Z.; Ocampo-Espindola, J. L.; Marwan, N.
    We present a fully automated method for the optimal state space reconstruction from univariate and multivariate time series. The proposed methodology generalizes the time delay embedding procedure by unifying two promising ideas in a symbiotic fashion. Using non-uniform delays allows the successful reconstruction of systems inheriting different time scales. In contrast to the established methods, the minimization of an appropriate cost function determines the embedding dimension without using a threshold parameter. Moreover, the method is capable of detecting stochastic time series and, thus, can handle noise contaminated input without adjusting parameters. The superiority of the proposed method is shown on some paradigmatic models and experimental data from chaotic chemical oscillators.