Search Results

Now showing 1 - 3 of 3
  • Item
    Supermodeling by combining imperfect models
    (Amsterdam : Elsevier B.V., 2011) Selten, F.M.; Duane, G.S.; Wiegerinck, W.; Keenlyside, N.; Kurths, J.; Kocarev, L.
    SUMO (Supermodeling by combining imperfect models) is a three-year project funded under FET Open program with a starting date October, 1, 2010. We review some basic facts and findings of the SUMO project.
  • Item
    Identifying controlling nodes in neuronal networks in different scales
    (San Francisco, CA : Public Library of Science (PLoS), 2012) Tang, Y.; Gao, H.; Zou, W.; Kurths, J.
    Recent studies have detected hubs in neuronal networks using degree, betweenness centrality, motif and synchronization and revealed the importance of hubs in their structural and functional roles. In addition, the analysis of complex networks in different scales are widely used in physics community. This can provide detailed insights into the intrinsic properties of networks. In this study, we focus on the identification of controlling regions in cortical networks of cats' brain in microscopic, mesoscopic and macroscopic scales, based on single-objective evolutionary computation methods. The problem is investigated by considering two measures of controllability separately. The impact of the number of driver nodes on controllability is revealed and the properties of controlling nodes are shown in a statistical way. Our results show that the statistical properties of the controlling nodes display a concave or convex shape with an increase of the allowed number of controlling nodes, revealing a transition in choosing driver nodes from the areas with a large degree to the areas with a low degree. Interestingly, the community Auditory in cats' brain, which has sparse connections with other communities, plays an important role in controlling the neuronal networks.
  • Item
    Order patterns networks (orpan) - A method to estimate time-evolving functional connectivity from multivariate time series
    (Lausanne : Frontiers Research Foundation, 2012) Schinkel, S.; Zamora-López, G.; Dimigen, O.; Sommer, W.; Kurths, J.
    Complex networks provide an excellent framework for studying the function of the human brain activity. Yet estimating functional networks from measured signals is not trivial, especially if the data is non-stationary and noisy as it is often the case with physiological recordings. In this article we propose a method that uses the local rank structure of the data to define functional links in terms of identical rank structures. The method yields temporal sequences of networks which permits to trace the evolution of the functional connectivity during the time course of the observation. We demonstrate the potentials of this approach with model data as well as with experimental data from an electrophysiological study on language processing.