13 results

## Search Results

Now showing 1 - 10 of 13

- ItemIndividual nodes contribution to the mesoscale of complex networks(Bristol : Institute of Physics Publishing, 2014) Klimm, F.; Borge-Holthoefer, J.; Wessel, N.; Kurths, J.; Zamora-Lopez, G.The analysis of complex networks is devoted to the statistical characterization of the topology of graphs at different scales of organization in order to understand their functionality. While the modular structure of networks has become an essential element to better apprehend their complexity, the efforts to characterize the mesoscale of networks have focused on the identification of the modules rather than describing the mesoscale in an informative manner. Here we propose a framework to characterize the position every node takes within the modular configuration of complex networks and to evaluate their function accordingly. For illustration, we apply this framework to a set of synthetic networks, empirical neural networks, and to the transcriptional regulatory network of the Mycobacterium tuberculosis. We find that the architecture of both neuronal and transcriptional networks are optimized for the processing of multisensory information with the coexistence of well-defined modules of specialized components and the presence of hubs conveying information from and to the distinct functional domains.
- ItemPotentials and limits to basin stability estimation(Bristol : Institute of Physics Publishing, 2017) Schultz, P.; Menck, P.J.; Heitzig, J.; Kurths, J.Stability assessment methods for dynamical systems have recently been complemented by basin stability and derived measures, i.e. probabilistic statements whether systems remain in a basin of attraction given a distribution of perturbations. Their application requires numerical estimation via Monte Carlo sampling and integration of differential equations. Here, we analyse the applicability of basin stability to systems with basin geometries that are challenging for this numerical method, having fractal basin boundaries and riddled or intermingled basins of attraction. We find that numerical basin stability estimation is still meaningful for fractal boundaries but reaches its limits for riddled basins with holes.
- ItemCartesian product of synchronization transitions and hysteresis(Bristol : Institute of Physics Publishing, 2017) Wang, C.; Zou, Y.; Guan, S.; Kurths, J.We present theoretical results when applying the Cartesian product of two Kuramoto models on different network topologies. By a detailed mathematical analysis, we prove that the dynamics on the Cartesian product graph can be described by the canonical equations as the Kuramoto model. We show that the order parameter of the Cartesian product is the product of the order parameters of the factors. On the product graph, we observe either continuous or discontinuous synchronization transitions. In addition, under certain conditions, the transition from an initially incoherent state to a coherent one is discontinuous, while the transition from a coherent state to an incoherent one is continuous, presenting a mixture state of first and second order synchronization transitions. Our numerical results are in a good agreement with the theoretical predictions. These results provide new insight for network design and synchronization control.
- ItemCharacterizing time series: When Granger causality triggers complex networks(Bristol : Institute of Physics Publishing, 2012) Ge, T.; Cui, Y.; Lin, W.; Kurths, J.; Liu, C.In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIH 7 human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.
- ItemComplex network approach to characterize the statistical features of the sunspot series(Bristol : Institute of Physics Publishing, 2014) Zou, Y.; Small, M.; Liu, Z.; Kurths, J.Complex network approaches have been recently developed as an alternative framework to study the statistical features of time-series data. We perform a visibility-graph analysis on both the daily and monthly sunspot series. Based on the data, we propose two ways to construct the network: one is from the original observable measurements and the other is from a negative-inverse- transformed series. The degree distribution of the derived networks for the strong maxima has clear non-Gaussian properties, while the degree distribution for minima is bimodal. The long-term variation of the cycles is reflected by hubs in the network that span relatively large time intervals. Based on standard network structural measures, we propose to characterize the long-term correlations by waiting times between two subsequent events. The persistence range of the solar cycles has been identified over 15-1000 days by a power-law regime with scaling exponent Î³ = 2.04 of the occurrence time of two subsequent strong minima. In contrast, a persistent trend is not present in the maximal numbers, although maxima do have significant deviations from an exponential form. Our results suggest some new insights for evaluating existing models.
- ItemGeneral scaling of maximum degree of synchronization in noisy complex networks(Bristol : Institute of Physics Publishing, 2014) Traxl, D.; Boers, N.; Kurths, J.The effects of white noise and global coupling strength on the maximum degree of synchronization in complex networks are explored. We perform numerical simulations of generic oscillator models with both linear and non-linear coupling functions on a broad spectrum of network topologies. The oscillator models include the Fitzhugh-Nagumo model, the Izhikevich model and the Kuramoto phase oscillator model. The network topologies range from regular, random and highly modular networks to scale-free and small-world networks, with both directed and undirected edges. We then study the dependency of the maximum degree of synchronization on the global coupling strength and the noise intensity. We find a general scaling of the synchronizability, and quantify its validity by fitting a regression model to the numerical data.
- ItemStability threshold approach for complex dynamical systems(Bristol : Institute of Physics Publishing, 2016) Klinshov, V.V.; Nekorkin, V.I.; Kurths, J.
- ItemInterval stability for complex systems(Bristol : Institute of Physics Publishing, 2018) Klinshov, V.V.; Kirillov, S.; Kurths, J.; Nekorkin, V.I.Stability of dynamical systems against strong perturbations is an important problem of nonlinear dynamics relevant to many applications in various areas. Here, we develop a novel concept of interval stability, referring to the behavior of the perturbed system during a finite time interval. Based on this concept, we suggest new measures of stability, namely interval basin stability (IBS) and interval stability threshold (IST). IBS characterizes the likelihood that the perturbed system returns to the stable regime (attractor) in a given time. IST provides the minimal magnitude of the perturbation capable to disrupt the stable regime for a given interval of time. The suggested measures provide important information about the system susceptibility to external perturbations which may be useful for practical applications. Moreover, from a theoretical viewpoint the interval stability measures are shown to bridge the gap between linear and asymptotic stability. We also suggest numerical algorithms for quantification of the interval stability characteristics and demonstrate their potential for several dynamical systems of various nature, such as power grids and neural networks.
- ItemTiming of transients: Quantifying reaching times and transient behavior in complex systems(Bristol : Institute of Physics Publishing, 2017) Kittel, T.; Heitzig, J.; Webster, K.; Kurths, J.In dynamical systems, one may ask how long it takes for a trajectory to reach the attractor, i.e. how long it spends in the transient phase. Although for a single trajectory the mathematically precise answer may be infinity, it still makes sense to compare different trajectories and quantify which of them approaches the attractor earlier. In this article, we categorize several problems of quantifying such transient times. To treat them, we propose two metrics, area under distance curve and regularized reaching time, that capture two complementary aspects of transient dynamics. The first, area under distance curve, is the distance of the trajectory to the attractor integrated over time. It measures which trajectories are 'reluctant', i.e. stay distant from the attractor for long, or 'eager' to approach it right away. Regularized reaching time, on the other hand, quantifies the additional time (positive or negative) that a trajectory starting at a chosen initial condition needs to approach the attractor as compared to some reference trajectory. A positive or negative value means that it approaches the attractor by this much 'earlier' or 'later' than the reference, respectively. We demonstrated their substantial potential for application with multiple paradigmatic examples uncovering new features.
- ItemRecovery time after localized perturbations in complex dynamical networks(Bristol : Institute of Physics Publishing, 2017) Mitra, C.; Kittel, T.; Choudhary, A.; Kurths, J.; Donner, R.V.Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of RÃ¶ssler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed concept.