Search Results

Now showing 1 - 2 of 2
  • Item
    Photoelectron holography in strong optical and dc electric fields
    (Bristol : Institute of Physics Publishing, 2014) Stodolna, A.; Huismans, Y.; Rouzée, A.; Lépine, F.; Vrakking, M.J.J.
    The application of velocity map imaging for the detection of photoelectrons resulting from atomic or molecular ionization allows the observation of interferometric, and in some cases holographic structures that contain detailed information on the target from which the photoelecrons are extracted. In this contribution we present three recent examples of the use of photoelectron velocity map imaging in experiments where atoms are exposed to strong optical and dc electric fields. We discuss (i) observations of the nodal structure of Stark states of hydrogen measured in a dc electric field, (ii) mid-infrared strong-field ionization of metastable Xe atoms and (iii) the reconstruction of helium electronic wavepackets in an attosecond pump-probe experiment. In each case, the interference between direct and indirect electron pathways, reminiscent of the reference and signal waves in holography, is seen to play an important role.
  • Item
    Attosecond electron spectroscopy using a novel interferometric pump-probe technique
    (College Park, Md. : APS, 2010) Mauritsson, J.; Remetter, T.; Swoboda, M.; Klünder, K.; L'Huillier, A.; Schafer, K.J.; Ghafur, O.; Kelkensberg, F.; Siu, W.; Johnsson, P.; Vrakking, M.J.J.; Znakovskaya, I.; Uphues, T.; Zherebtsov, S.; Kling, M.F.; Lépine, F.; Benedetti, E.; Ferrari, F.; Sansone, G.; Nisoli, M.
    We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration. © 2010 The American Physical Society.