Search Results

Now showing 1 - 6 of 6
  • Item
    Batch and continuous lactic acid fermentation based on a multi-substrate approach
    (Basel : MDPI AG, 2020) Olszewska-Widdrat, Agata; Alexandri, Maria; López-Gómez, José Pablo; Schneider, Roland; Venus, Joachim
    The utilisation of waste materials and industrial residues became a priority within the bioeconomy concept and the production of biobased chemicals. The aim of this study was to evaluate the feasibility to continuously produce L-lactic acid from different renewable substrates, in a multi-substrate strategy mode. Based on batch experiments observations, Bacillus coagulans A534 strain was able to continuously metabolise acid whey, sugar beet molasses, sugar bread, alfalfa press green juice and tapioca starch. Additionally, reference experiments showed its behaviour in standard medium. Continuous fermentations indicated that the highest productivity was achieved when molasses was employed with a value of 10.34 g·L−1·h−1, while the lactic acid to sugar conversion yield was 0.86 g·g−1 . This study demonstrated that LA can be efficiently produced in continuous mode regardless the substrate, which is a huge advantage in comparison to other platform chemicals. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Valorising agro-industrial wastes within the circular bioeconomy concept: The case of defatted rice bran with emphasis on bioconversion strategies
    (Basel : MDPI AG, 2020) Alexandri, Maria; López-Gómez, José Pablo; Olszewska-Widdrat, Agata; Venus, Joachim
    The numerous environmental problems caused by the extensive use of fossil resources have led to the formation of the circular bioeconomy concept. Renewable resources will constitute the cornerstone of this new, sustainable model, with biomass presenting a huge potential for the production of fuels and chemicals. In this context, waste and by-product streams from the food industry will be treated not as "wastes" but as resources. Rice production generates various by-product streams which currently are highly unexploited, leading to environmental problems especially in the countries that are the main producers. The main by-product streams include the straw, the husks, and the rice bran. Among these streams, rice bran finds applications in the food industry and cosmetics, mainly due to its high oil content. The high demand for rice bran oil generates huge amounts of defatted rice bran (DRB), the main by-product of the oil extraction process. The sustainable utilisation of this by-product has been a topic of research, either as a food additive or via its bioconversion into value-added products and chemicals. This review describes all the processes involved in the efficient bioconversion of DRB into biotechnological products. The detailed description of the production process, yields and productivities, as well as strains used for the production of bioethanol, lactic acid and biobutanol, among others, are discussed. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Integration of Solid State and Submerged Fermentations for the Valorization of Organic Municipal Solid Waste
    (Basel : MDPI, 2021) Martău, Gheorghe-Adrian; Unger, Peter; Schneider, Roland; Venus, Joachim; Vodnar, Dan Cristian; López-Gómez, José Pablo
    Solid state fermentation (SsF) is recognized as a suitable process for the production of enzymes using organic residues as substrates. However, only a few studies have integrated an evaluation of the feasibility of applying enzymes produced by SsF into subsequent hydrolyses followed by the production of target compounds, e.g., lactic acid (LA), through submerged-liquid fermentations (SmF). In this study, wheat bran (WB) was used as the substrate for the production of enzymes via SsF by Aspergillus awamori DSM No. 63272. Following optimization, cellulase and glucoamylase activities were 73.63 ± 5.47 FPU/gds and 107.10 ± 2.63 U/gdb after 7 days and 5 days of fermentation, respectively. Enzymes were then used for the hydrolysis of the organic fraction of municipal solid waste (OFMSW). During hydrolysis, glucose increased considerably with a final value of 19.77 ± 1.56 g/L. Subsequently, hydrolysates were fermented in SmF by Bacillus coagulans A166 increasing the LA concentration by 15.59 g/L. The data reported in this study provides an example of how SsF and SmF technologies can be combined for the valorization of WB and OFMSW.
  • Item
    Organic fraction of municipal solid waste for the production of L-lactic acid with high optical purity
    (2020) López-Gómez, José Pablo; Alexandri, Maria; Schneider, Roland; Latorre-Sánchez, Marcos; Coll Lozano, Caterina; Venus, Joachim
    The organic fraction of municipal solid waste (OFMSW) is an abundant biowaste with great potential in the bioeconomy model. Previous reports have demonstrated that OFMSW hydrolysates are good substrates for lactic acid (LA) production. However, LA can exist in two enantiomeric forms (L- and D-) and most commercial LA applications require a high enantiomeric purity, typically of the L-isomer. Due to natural occurring bacteria in the waste, a mixture of D- and L-LA can form in the substrate, reducing the final enantiomeric purity of the product and limiting its commercial application. In the research reported in this article, hydrolysates from OFMSW were evaluated for the production L-LA with high enantiomeric purity. Firstly, a pre-treatment with monopolar electrodialysis membranes was implemented to remove the unfavourable D-LA in the hydrolysate. This step allowed the reduction in LA concentration and subsequent fermentations of the hydrolysate resulted in enantiomeric purities over 98%. At the pilot scale, a fermentation of the pre-treated hydrolysate, by B. coagulans A166, resulted in a final LA concentration of 61.1 g L−1 and a yield of 0.94 g g−1. The downstream of the process resulted on a LA recovery of 51.5% and a L-LA optical purity of 98.7%.
  • Item
    Potential Role of Sequential Solid-State and Submerged-Liquid Fermentations in a Circular Bioeconomy
    (Basel : MDPI, 2021) López-Gómez, José Pablo; Venus, Joachim
    An efficient processing of organic solid residues will be pivotal in the development of the circular bioeconomy. Due to their composition, such residues comprise a great biochemical conversion potential through fermentations. Generally, the carbohydrates and proteins present in the organic wastes cannot be directly metabolized by microorganisms. Thus, before fermentation, enzymes are used in a hydrolysis step to release digestible sugars and nitrogen. Although enzymes can be efficiently produced from organic solid residues in solid-state fermentations (SsF), challenges in the development and scale-up of SsF technologies, especially bioreactors, have hindered a wider application of such systems. Therefore, most of the commercial enzymes are produced in submerged-liquid fermentations (SmF) from expensive simple sugars. Instead of independently evaluating SsF and SmF, the review covers the option of combining them in a sequential process in which, enzymes are firstly produced in SsF and then used for hydrolysis, yielding a suitable medium for SmF. The article reviews experimental work that has demonstrated the feasibility of the process and underlines the benefits that such combination has. Finally, a discussion is included which highlights that, unlike typically perceived, SsF should not be considered a counterpart of SmF but, in contrast, the main advantages of each type of fermentation are accentuated in a synergistic sequential SsF-SmF.
  • Item
    Production of lactic acid from pasta wastes using a biorefinery approach
    (London : BioMed Central, 2022) Marzo-Gago, Cristina; Venus, Joachim; López-Gómez, José Pablo
    A total of 398 kt of pasta waste (PW), generated during the production process of pasta, were produced in 2021. Due to its chemical composition and practically zero cost, PW has already been studied as a raw material for the production of lactic acid (LA) through fermentations. The main objective of this article was to improve the economic viability of the process by replacing commercial enzymes, necessary for starch hydrolysis in PW, with raw enzymes also produced from wastes. Enzyme synthesis was achieved through solid-state fermentation (SsF) of wheat bran by Aspergillus awamori or Aspergillus oryzae at various moisture contents. The maximum amylase activity (52 U/g dry solid) was achieved after 2 days of fermentation with A. awamori at 60% of moisture content. After that, the enzymes were used to hydrolyse PW, reaching 76 g/L of total sugars, 65 g/L of glucose and a yield of 0.72 gglu/gds with the enzymes produced by A. awamori. Subsequently, the hydrolysate was fermented into LA using Bacillus coagulans A559, yielding 52 g/L and 49 g/L with and without yeast extract, respectively. Remarkably, compared to the process with commercial enzymes, a higher LA yield was reached when enzymes produced by SsF were added (0.80 gLA/gglu). Furthermore, the productivities between the two processes were similar (around 3.9 g/L/h) which highlights that yeast extract is not necessary when using enzymes produced by SsF.