Search Results

Now showing 1 - 2 of 2
  • Item
    Organic fraction of municipal solid waste for the production of L-lactic acid with high optical purity
    (2020) López-Gómez, José Pablo; Alexandri, Maria; Schneider, Roland; Latorre-Sánchez, Marcos; Coll Lozano, Caterina; Venus, Joachim
    The organic fraction of municipal solid waste (OFMSW) is an abundant biowaste with great potential in the bioeconomy model. Previous reports have demonstrated that OFMSW hydrolysates are good substrates for lactic acid (LA) production. However, LA can exist in two enantiomeric forms (L- and D-) and most commercial LA applications require a high enantiomeric purity, typically of the L-isomer. Due to natural occurring bacteria in the waste, a mixture of D- and L-LA can form in the substrate, reducing the final enantiomeric purity of the product and limiting its commercial application. In the research reported in this article, hydrolysates from OFMSW were evaluated for the production L-LA with high enantiomeric purity. Firstly, a pre-treatment with monopolar electrodialysis membranes was implemented to remove the unfavourable D-LA in the hydrolysate. This step allowed the reduction in LA concentration and subsequent fermentations of the hydrolysate resulted in enantiomeric purities over 98%. At the pilot scale, a fermentation of the pre-treated hydrolysate, by B. coagulans A166, resulted in a final LA concentration of 61.1 g L−1 and a yield of 0.94 g g−1. The downstream of the process resulted on a LA recovery of 51.5% and a L-LA optical purity of 98.7%.
  • Item
    Production of lactic acid from pasta wastes using a biorefinery approach
    (London : BioMed Central, 2022) Marzo-Gago, Cristina; Venus, Joachim; López-Gómez, José Pablo
    A total of 398 kt of pasta waste (PW), generated during the production process of pasta, were produced in 2021. Due to its chemical composition and practically zero cost, PW has already been studied as a raw material for the production of lactic acid (LA) through fermentations. The main objective of this article was to improve the economic viability of the process by replacing commercial enzymes, necessary for starch hydrolysis in PW, with raw enzymes also produced from wastes. Enzyme synthesis was achieved through solid-state fermentation (SsF) of wheat bran by Aspergillus awamori or Aspergillus oryzae at various moisture contents. The maximum amylase activity (52 U/g dry solid) was achieved after 2 days of fermentation with A. awamori at 60% of moisture content. After that, the enzymes were used to hydrolyse PW, reaching 76 g/L of total sugars, 65 g/L of glucose and a yield of 0.72 gglu/gds with the enzymes produced by A. awamori. Subsequently, the hydrolysate was fermented into LA using Bacillus coagulans A559, yielding 52 g/L and 49 g/L with and without yeast extract, respectively. Remarkably, compared to the process with commercial enzymes, a higher LA yield was reached when enzymes produced by SsF were added (0.80 gLA/gglu). Furthermore, the productivities between the two processes were similar (around 3.9 g/L/h) which highlights that yeast extract is not necessary when using enzymes produced by SsF.