Search Results

Now showing 1 - 7 of 7
  • Item
    Probing the dynamics of plasmon-excited hexanethiol-capped gold nanoparticles by picosecond X-ray absorption spectroscopy
    (London [u.a.] : Royal Society of Chemistry, 2014) Zamponi, F.; Penfold, T.J.; Nachtegaal, M.; Lübcke, A.; Rittmann, J.; Milne, C.J.; Chergui, M.; van Bokhoven, J.A.
    Picosecond X-ray absorption spectroscopy (XAS) is used to investigate the electronic and structural dynamics initiated by plasmon excitation of 1.8 nm diameter Au nanoparticles (NPs) functionalised with 1-hexanethiol. We show that 100 ps after photoexcitation the transient XAS spectrum is consistent with an 8% expansion of the Au-Au bond length and a large increase in disorder associated with melting of the NPs. Recovery of the ground state occurs with a time constant of ∼1.8 ns, arising from thermalisation with the environment. Simulations reveal that the transient spectrum exhibits no signature of charge separation at 100 ps and allows us to estimate an upper limit for the quantum yield (QY) of this process to be <0.1.
  • Item
    Time-resolved photoelectron spectroscopy of adenine and adenosine in aqueous solution
    (London [u.a.] : Royal Society of Chemistry, 2013) Buchner, F.; Ritze, H.-H.; Lahl, J.; Lübcke, A.
    Time-resolved photoelectron spectroscopy is applied to study the excited state dynamics of the DNA base adenine and its ribonucleoside adenosine in aqueous solution for pump and probe photon energies in the range between 4.66 eV and 5.21 eV. We follow the evolution of the prepared excited state on the potential energy surface and retrieve lifetimes of the S1 state under different excitation conditions.
  • Item
    Coulomb explosion of diatomic molecules in intense XUV fields mapped by partial covariance
    (Bristol : Institute of Physics Publishing, 2013) Kornilov, O.; Eckstein, M.; Rosenblatt, M.; Schulz, C.P.; Motomura, K.; Rouzée, A.; Klei, J.; Foucar, L.; Siano, M.; Lübcke, A.; Schapper, F.; Johnsson, P.; Holland, D.M.P.; Schlathölter, T.; Marchenko, T.; Düsterer, S.; Ueda, K.; Vrakking, M.J.J.; Frasinski, L.J.
    Single-shot time-of-flight spectra for Coulomb explosion of N2 and I2 molecules have been recorded at the Free Electron LASer in Hamburg (FLASH) and have been analysed using a partial covariance mapping technique. The partial covariance analysis unravels a detailed picture of all significant Coulomb explosion pathways, extending up to the N 4+-N5+ channel for nitrogen and up to the I 8+-I9+ channel for iodine. The observation of the latter channel is unexpected if only sequential ionization processes from the ground state ions are considered. The maximum kinetic energy release extracted from the covariance maps for each dissociation channel shows that Coulomb explosion of nitrogen molecules proceeds much faster than that of the iodine. The N 2 ionization dynamics is modelled using classical trajectory simulations in good agreement with the outcome of the experiments. The results suggest that covariance mapping of the Coulomb explosion can be used to measure the intensity and pulse duration of free-electron lasers.
  • Item
    Ultrafast structural changes in SrTiO3 due to a superconducting phase transition in a YBa2Cu3O7 top layer
    (College Park, MD : Institute of Physics Publishing, 2010) Lübcke, A.; Zamponi, F.; Loetzsch, R.; Kämpfer, T.; Uschmann, I.; Große, V.; Schmidl, F.; Köttig, T.; Thürk, M.; Schwoerer, H.; Förster, E.; Seidel, P.; Sauerbrey, R.
    We investigate the structural response of SrTiO3 when Cooper pairs are broken in an epitaxially grown YBa2Cu3O 7 top layer due to both heating and optical excitation. The crystal structure is investigated by static, temperaturedependent and time-resolved x-ray diffraction. In the static case, a large strain field in SrTiO3 is formed in the proximity of the onset of the superconducting phase in the top layer, suggesting a relationship between both effects. For the time-dependent studies, we likewise find a large fraction of the probed volume of the SrTiO3 substrate strained if the top layer is superconducting. Upon optical breaking of Cooper pairs, the observed width of the rocking curve is reduced and its position is slightly shifted towards smaller angles. The dynamical theory of x-ray diffraction is used to model the measured rocking curves. We find that the thickness of the strained layer is reduced by about 200 nm on a sub-ps to ps timescale, but the strain value at the interface between SrTiO3 and YBa2Cu3O7 remains unaffected. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
  • Item
    Excited state dynamics of liquid water near the surface
    (Les Ulis : EDP Sciences, 2013) Buchner, F.; Ritze, H.-H.; Beutler, M.; Schultz, T.; Hertel, I.-V.; Lübcke, A.
    Time resolved photoelectron spectroscopy explores the excited state dynamics of liquid water in presence of cations close to the surface. A transient hydrated electroncation complex is observed.
  • Item
    Parametric study of cycle modulation in laser driven ion beams and acceleration field retrieval at femtosecond timescale
    (College Park, MD : American Physical Society, 2019) Schnürer, M.; Braenzel, J.; Lübcke, A.; Andreev, A.A.
    High-frequency modulations appearing in the kinetic energy distribution of laser-accelerated ions are proposed for retrieving the acceleration field dynamics at the femtosecond timescale. Such an approach becomes possible if the laser-cycling field modulates the particle density in the ion spectra and produces quasitime stamps for analysis. We investigate target and laser parameters determining this effect and discuss the dependencies of the observed modulation. Our findings refine a basic mechanism, the target normal sheath acceleration, where an intense and ultrafast laser pulse produces a very strong electrical field at a plasma-vacuum interface. The field decays rapidly due to energy dissipation and forms a characteristic spectrum of fast ions streaming away from the interface. We show that the derived decay function of the field is in accordance with model predictions of the accelerating field structure. Our findings are supported by two-dimensional particle-in-cell simulations. The knowledge of the femtosecond field dynamics helps to rerate optimization strategies for laser ion acceleration.
  • Item
    Femtosecond X-ray absorption study of electron localization in photoexcited anatase TiO 2
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Santomauro, F.G.; Lübcke, A.; Rittmann, J.; Baldini, E.; Ferrer, A.; Silatani, M.; Zimmermann, P.; Grübel, S.; Johnson, J.A.; Mariager, S.O.; Beaud, P.; Grolimund, D.; Borca, C.; Ingold, G.; Johnson, S.L.; Chergui, M.
    Transition metal oxides are among the most promising solar materials, whose properties rely on the generation, transport and trapping of charge carriers (electrons and holes). Identifying the latter’s dynamics at room temperature requires tools that combine elemental and structural sensitivity, with the atomic scale resolution of time (femtoseconds, fs). Here, we use fs Ti K-edge X-ray absorption spectroscopy (XAS) upon 3.49 eV (355 nm) excitation of aqueous colloidal anatase titanium dioxide nanoparticles to probe the trapping dynamics of photogenerated electrons. We find that their localization at Titanium atoms occurs in <300 fs, forming Ti3+ centres, in or near the unit cell where the electron is created. We conclude that electron localization is due to its trapping at pentacoordinated sites, mostly present in the surface shell region. The present demonstration of fs hard X-ray absorption capabilities opens the way to a detailed description of the charge carrier dynamics in transition metal oxides.