Search Results

Now showing 1 - 3 of 3
  • Item
    The Turbopause experiment: Atmospheric stability and turbulent structure spanning the turbopause altitude
    (München : European Geopyhsical Union, 2011) Lehmacher, G.A.; Scott, T.D.; Larsen, M.F.; Bilén, S.G.; Croskey, C.L.; Mitchell, J.D.; Rapp, M.; Lübken, F.-J.; Collins, R.L.
    Very few sequences of high resolution wind and temperature measurements in the lower thermosphere are available in the literature, which makes it difficult to verify the simulation results of models that would provide better understanding of the complex dynamics of the region. To address this problem the Turbopause experiment used four rockets launched over a period of approximately two hours from Poker Flat Research Range, Alaska (64° N, 147° W) on the night of 17–18 February 2009. All four rocket payloads released trimethyl aluminum trails for neutral wind and turbulence measurements, and two of the rockets carried ionization gauges and fixed-bias Langmuir probes measuring neutral and electron densities, small-scale fluctuations and neutral temperatures. Two lidars monitored temperature structure and sodium densities. The observations were made under quiet geomagnetic conditions and show persistence in the wind magnitudes and shears throughout the observing period while being modulated by inertia-gravity waves. High resolution temperature profiles show the winter polar mesosphere and lower thermosphere in a state of relatively low stability with several quasi-adiabatic layers between 74 and 103 km. Temperature and wind data were combined to calculate Richardson number profiles. Evidence for turbulence comes from simultaneous observations of density fluctuations and downward transport of sodium in a mixed layer near 75 km; the observation of turbulent fluctuations and energy dissipation from 87–90 km; and fast and irregular trail expansion at 90–93 km, and especially between 95 to 103 km. The regions of turbulent trails agree well with regions of quasi-adiabatic temperature gradients. Above 103 km, trail diffusion was mainly laminar; however, unusual features and vortices in the trail diffusion were observed up to 118 km that have not been as prevalent or as clearly evident in earlier trail releases.
  • Item
    Simultaneous in situ measurements of small-scale structures in neutral, plasma, and atomic oxygen densities during the WADIS sounding rocket project
    (Göttingen : Copernicus GmbH, 2019) Strelnikov, B.; Eberhart, M.; Friedrich, M.; Hedin, J.; Khaplanov, M.; Baumgarten, G.; Williams, B.P.; Staszak, T.; Asmus, H.; Strelnikova, I.; Latteck, R.; Grygalashvyly, M.; Lübken, F.-J.; Höffner, J.; Wörl, R.; Gumbel, J.; Löhle, S.; Fasoulas, S.; Rapp, M.; Barjatya, A.; Taylor, M.J.; Pautet, P.-D.
    In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere-lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply a change in its diffusion properties. © 2019 Author(s).
  • Item
    The thermal and dynamical state of the atmosphere during polar mesosphere winter echoes
    (München : European Geopyhsical Union, 2006) Lübken, F.-J.; Strelnikov, B.; Rapp, M.; Singer, W.; Latteck, R.; Brattli, A.; Hoppe, U.-P.; Friedrich, M.
    In January 2005, a total of 18 rockets were launched from the Andøya Rocket Range in Northern Norway (69° N) into strong VHF radar echoes called "Polar Mesosphere Winter Echoes" (PMWE). The echoes were observed in the lower and middle mesosphere during large solar proton fluxes. In general, PMWE occur much more seldom compared to their summer counterparts PMSE (typical occurrence rates at 69° N are 1–3% vs. 80%, respectively). Our in-situ measurements by falling sphere, chaff, and instrumented payloads provide detailed information about the thermal and dynamical state of the atmosphere and therefore allow an unprecedented study of the background atmosphere during PMWE. There are a number of independent observations indicating that neutral air turbulence has caused PMWE. Ion density fluctuations show a turbulence spectrum within PMWE and no fluctuations outside. Temperature lapse rates close to the adiabatic gradient are observed in the vicinity of PMWE indicating persistent turbulent mixing. The spectral broadening of radar echoes is consistent with turbulent velocity fluctuations. Turbulence also explains the mean occurrence height of PMWE (~68–75 km): viscosity increases rapidly with altitude and destroys any small scale fluctuations in the upper mesosphere, whereas electron densities are usually too low in the lower mesosphere to cause significant backscatter. The seasonal variation of echoes in the lower mesosphere is in agreement with a turbulence climatology derived from earlier sounding rocket flights. We have performed model calculations to study the radar backscatter from plasma fluctuations caused by neutral air turbulence. We find that volume reflectivities observed during PMWE are in quantitative agreement with theory. Apart from turbulence the most crucial requirement for PMWE is a sufficiently large number of electrons, for example produced by solar proton events. We have studied the sensitivity of the radar echo strength on various parameters, most important electron number density and turbulence intensity. Our observational and theoretical considerations do not provide any evidence that charged aerosol particles are needed to explain PMWE, in contrast to the summer echoes which owe their existence to charged ice particles.