Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Mesospheric temperature soundings with the new, daylight-capable IAP RMR lidar

2016, Gerding, Michael, Kopp, Maren, Höffner, Josef, Baumgarten, Kathrin, Lübken, Franz-Josef

Temperature measurements by lidar are an important tool for the understanding of the mean state of the atmosphere as well as the propagation of gravity waves and thermal tides. Though, mesospheric lidar soundings are often limited to nighttime conditions (e.g., solar zenith angle  >  96°) due to the low signal-to-noise ratio during the day. By this, examination of long-period gravity waves and tides is inhibited, as well as soundings in summer at polar latitudes. We developed a new daylight-capable Rayleigh–Mie–Raman (RMR) lidar at our site in Kühlungsborn, Germany (54° N, 12° E), that is in routine operation since 2010 for temperature soundings up to 90 km or  ∼  75 km (night or day) and soundings of noctilucent clouds. Here we describe the setup of the system with special emphasis on the daylight suppression methods like spatial and spectral filtering. The small bandwidth of the Fabry–Pérot etalons for spectral filtering of the received signal induces an altitude-dependent transmission of the detector. As a result, the signal is no longer proportional to the air density and the hydrostatic integration of the profile results in systematic temperature errors of up to 4 K. We demonstrate a correction method and the validity of correction by comparison with data obtained by our co-located, nighttime-only RMR lidar where no etalon is installed. As a further example a time series of temperature profiles between 20 and 80 km is presented for day and night of 9–10 March 2014. Together with the other data of March 2014 these profiles are used to calculate tidal amplitudes. It is found that tidal amplitudes vary between ∼  1 and 5 K depending on altitude.

Loading...
Thumbnail Image
Item

Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar

2017, Hildebrand, Jens, Baumgarten, Gerd, Fiedler, Jens, Lübken, Franz-Josef

We present an extensive data set of simultaneous temperature and wind measurements in the Arctic middle atmosphere. It consists of more than 300 h of Doppler Rayleigh lidar observations obtained during three January seasons (2012, 2014, and 2015) and covers the altitude range from 30 km up to about 85 km. The data set reveals large year-to-year variations in monthly mean temperatures and winds, which in 2012 are affected by a sudden stratospheric warming. The temporal evolution of winds and temperatures after that warming are studied over a period of 2 weeks, showing an elevated stratopause and the reformation of the polar vortex. The monthly mean temperatures and winds are compared to data extracted from the Integrated Forecast System of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the Horizontal Wind Model (HWM07). Lidar and ECMWF data show good agreement of mean zonal and meridional winds below  ≈ 55 km altitude, but we also find mean temperature, zonal wind, and meridional wind differences of up to 20 K, 20 m s−1, and 5 m s−1, respectively. Differences between lidar observations and HWM07 data are up to 30 m s−1. From the fluctuations of temperatures and winds within single nights we extract the potential and kinetic gravity wave energy density (GWED) per unit mass. It shows that the kinetic GWED is typically 5 to 10 times larger than the potential GWED, the total GWED increases with altitude with a scale height of  ≈ 16 km. Since temporal fluctuations of winds and temperatures are underestimated in ECMWF, the total GWED is underestimated as well by a factor of 3–10 above 50 km altitude. Similarly, we estimate the energy density per unit mass for large-scale waves (LWED) from the fluctuations of nightly mean temperatures and winds. The total LWED is roughly constant with altitude. The ratio of kinetic to potential LWED varies with altitude over 2 orders of magnitude. LWEDs from ECMWF data show results similar to the lidar data. From the comparison of GWED and LWED, it follows that large-scale waves carry about 2 to 5 times more energy than gravity waves.

Loading...
Thumbnail Image
Item

Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

2018, Baumgarten, Kathrin, Gerding, Michael, Baumgarten, Gerd, Lübken, Franz-Josef

Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh–Mie–Raman (RMR) lidar at Kühlungsborn (54°N, 12°E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24h wave occurs only between 40 and 60km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4–8h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave–wave interaction resulting in a minimum of the 24h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

Loading...
Thumbnail Image
Item

CLIME/RADIMP : Schlussbericht zum Forschungsvorhaben CLIME: Klimaänderungen in der Mesosphäre, climate changes in the mesosphere ; RADIMP: Non-LTE Studie des Strahlungseinflusses der unteren Atmosphäre auf die Mesosphäre/untere Thermosphäre, Non-LTE study of the radiative impact of the lower atmosphere on the mesosphere/lower thermosphere

2005, Lübken, Franz-Josef

[no abstract available]

Loading...
Thumbnail Image
Item

Spatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign

2017, Strelnikov, Boris, Szewczyk, Artur, Strelnikova, Irina, Latteck, Ralph, Baumgarten, Gerd, Lübken, Franz-Josef, Rapp, Markus, Löhle, Stefan, Eberhart, Martin, Hoppe, Ulf-Peter, Dunker, Tim, Friedrich, Martin, Hedin, Jonas, Khaplanov, Mikhail, Gumbel, Jörg, Barjatya, Aroh

In summer 2013 the WADIS-1 sounding rocket campaign was conducted at the Andøya Space Center (ACS) in northern Norway (69° N, 16° E). Among other things, it addressed the question of the variability in mesosphere/lower thermosphere (MLT) turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar near Tromsø. This allowed for horizontal variability to be observed in the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate, ε varied in space in a wavelike manner both horizontally and in the vertical direction. This wavelike modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that the vertical mean value of radar observations of ε agrees reasonably with rocket-borne measurements. In this way defined 〈εradar〉 value reveals clear tidal modulation and results in variation by up to 2 orders of magnitude with periods of 24 h. The 〈εradar〉 value also shows 12 h and shorter (1 to a few hours) modulations resulting in one decade of variation in 〈εradar〉 magnitude. The 24 h modulation appeared to be in phase with tidal change of horizontal wind observed by SAURA-MF radar. Such wavelike and, in particular, tidal modulation of the turbulence dissipation field in the MLT region inferred from our analysis is a new finding of this work.

Loading...
Thumbnail Image
Item

Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques

2016, Lübken, Franz-Josef, Baumgarten, Gerd, Hildebrand, Jens, Schmidlin, Francis J.

We present the first comparison of a new lidar technique to measure winds in the middle atmosphere, called DoRIS (Doppler Rayleigh Iodine Spectrometer), with a rocket-borne in situ method, which relies on measuring the horizontal drift of a target (“starute”) by a tracking radar. The launches took place from the Andøya Space Center (ASC), very close to the ALOMAR observatory (Arctic Lidar Observatory for Middle Atmosphere Research) at 69° N. DoRIS is part of a steerable twin lidar system installed at ALOMAR. The observations were made simultaneously and with a horizontal distance between the two lidar beams and the starute trajectories of typically 0–40 km only. DoRIS measured winds from 14 March 2015, 17:00 UTC, to 15 March 2015, 11:30 UTC. A total of eight starute flights were launched successfully from 14 March, 19:00 UTC, to 15 March, 00:19 UTC. In general there is excellent agreement between DoRIS and the in situ measurements, considering the combined range of uncertainties. This concerns not only the general height structures of zonal and meridional winds and their temporal developments, but also some wavy structures. Considering the comparison between all starute flights and all DoRIS observations in a time period of ±20 min around each individual starute flight, we arrive at mean differences of typically ±5–10 m s−1 for both wind components. Part of the remaining differences are most likely due to the detection of different wave fronts of gravity waves. There is no systematic difference between DoRIS and the in situ observations above 30 km. Below ∼ 30 km, winds from DoRIS are systematically too large by up to 10–20 m s−1, which can be explained by the presence of aerosols. This is proven by deriving the backscatter ratios at two different wavelengths. These ratios are larger than unity, which is an indication of the presence of aerosols.

Loading...
Thumbnail Image
Item

Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations

2017, Schneider, Andreas, Wagner, Johannes, Söder, Jens, Gerding, Michael, Lübken, Franz-Josef

Measurements of turbulent energy dissipation rates obtained from wind fluctuations observed with the balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) are combined with simulations with the Weather Research and Forecasting (WRF) model to study the breakdown of waves into turbulence. One flight from Kiruna (68° N, 21° E) and two flights from Kühlungsborn (54° N, 12° E) are analysed. Dissipation rates are of the order of 0. 1 mW kg−1 (∼ 0.01 K d−1) in the troposphere and in the stratosphere below 15 km, increasing in distinct layers by about 2 orders of magnitude. For one flight covering the stratosphere up to ∼ 28 km, the measurement shows nearly no turbulence at all above 15 km. Another flight features a patch with highly increased dissipation directly below the tropopause, collocated with strong wind shear and wave filtering conditions. In general, small or even negative Richardson numbers are affirmed to be a sufficient condition for increased dissipation. Conversely, significant turbulence has also been observed in the lower stratosphere under stable conditions. Observed energy dissipation rates are related to wave patterns visible in the modelled vertical winds. In particular, the drop in turbulent fraction at 15 km mentioned above coincides with a drop in amplitude in the wave patterns visible in the WRF. This indicates wave saturation being visible in the LITOS turbulence data.

Loading...
Thumbnail Image
Item

Estimate of size distribution of charged MSPs measured in situ in winter during the WADIS-2 sounding rocket campaign

2017, Asmus, Heiner, Staszak, Tristan, Strelnikov, Boris, Lübken, Franz-Josef, Friedrich, Martin, Rapp, Markus

We present results of in situ measurements of mesosphere–lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs). The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was ∼ 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes  > 1 nm were stratified in layers of  ∼ 1 km thickness and lying some kilometers apart from each other.

Loading...
Thumbnail Image
Item

Local time dependence of polar mesospheric clouds: A model study

2018, Schmidt, Francie, Baumgarten, Gerd, Berger, Uwe, Fiedler, Jens, Lübken, Franz-Josef

The Mesospheric Ice Microphysics And tranSport model (MIMAS) is used to study local time (LT) variations of polar mesospheric clouds (PMCs) in the Northern Hemisphere during the period from 1979 to 2013. We investigate the tidal behavior of brightness, altitude, and occurrence frequency and find a good agreement between model and lidar observations. At the peak of the PMC layer the mean ice radius varies from 35 to 45nm and the mean number density varies from 80 to 150cm−3 throughout the day. We also analyze PMCs in terms of ice water content (IWC) and show that only amplitudes of local time variations in IWC are sensitive to threshold conditions, whereas phases are conserved. In particular, relative local time variations decrease with larger thresholds. Local time variations also depend on latitude. In particular, absolute local time variations increase towards the pole. Furthermore, a phase shift exists towards the pole which is independent of the threshold value. In particular, the IWC maximum moves backward in time from 08:00LT at midlatitudes to 02:00LT at high latitudes. The persistent features of strong local time modulations in ice parameters are caused by local time structures in background temperature and water vapor. For a single year local time variations of temperature at 69°N are in a range of ±3K near 83km altitude. At sublimation altitudes the water vapor variation is about ±3.5ppmv, leading to a change in the saturation ratio by a factor of about 2 throughout the day.

Loading...
Thumbnail Image
Item

ROMA - Rocketborne observations in the middle atmosphere : Abschlussbericht zum Vorhaben

2008, Lübken, Franz-Josef, Rapp, Markus

[no abstract available]