Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Aerial river management by smart cross-border reforestation

2019, Weng, Wei, Costa, Luís, Lüdeke, Matthias K.B., Zemp, Delphine C.

In the face of increasing socio-economic and climatic pressures in growing cities, it is rational for managers to consider multiple approaches for securing water availability. One often disregarded option is the promotion of reforestation in source regions supplying important quantities of atmospheric moisture transported over long distances through aerial rivers, affecting water resources of a city via precipitation and runoff (‘smart reforestation’). Here we present a case demonstrating smart reforestation's potential as a water management option. Using numerical moisture back-tracking models, we identify important upwind regions contributing to the aerial river of Santa Cruz de la Sierra (Bolivia). Simulating the effect of reforestation in the identified regions, annual precipitation and runoff reception in the city was found to increase by 1.25% and 2.30% respectively, while runoff gain during the dry season reached 26.93%. Given the city's population growth scenarios, the increase of the renewable water resource by smart reforestation could cover 22–59% of the additional demand by 2030. Building on the findings, we argue for a more systematic consideration of aerial river connections between regions in reforestation and land planning for future challenges. © 2019 The Authors

Loading...
Thumbnail Image
Item

Typology of coastal urban vulnerability under rapid urbanization

2020, Sterze, Till, Lüdeke, Matthias K.B., Walther, Carsten, Kok, Marcel T., Sietz, Diana, Lucas, Paul L.

Coastal areas are urbanizing at unprecedented rates, particularly in low- and middle-income countries. Combinations of long-standing and emerging problems in these urban areas generate vulnerability for human well-being and ecosystems alike. This baseline study provides a spatially explicit global systematization of these problems into typical urban vulnerability profiles for the year 2000 using largely sub-national data. Using 11 indicator datasets for urban expansion, urban population growth, marginalization of poor populations, government effectiveness, exposures and damages to climate-related extreme events, low-lying settlement, and wetlands prevalence, a cluster analysis reveals a global typology of seven clearly distinguishable clusters, or urban profiles of vulnerability. Each profile is characterized by a specific data-value combination of indicators representing mechanisms that generate vulnerability. Using 21 studies for testing the plausibility, we identify seven key profile-based vulnerabilities for urban populations, which are relevant in the context of global urbanization, expansion, and climate change. We show which urban coasts are similar in this regard. Sensitivity and exposure to extreme climate-related events, and government effectiveness, are the most important factors for the huge asymmetries of vulnerability between profiles. Against the background of underlying global trends we propose entry points for profile-based vulnerability reduction. The study provides a baseline for further pattern analysis in the rapidly urbanizing coastal fringe as data availability increases. We propose to explore socio-ecologically similar coastal urban areas as a basis for sharing experience and vulnerability-reducing measures among them.

Loading...
Thumbnail Image
Item

A Gini approach to spatial CO2 emissions

2020, Zhou, Bin, Thies, Stephan, Gudipudi, Ramana, Lüdeke, Matthias K.B., Kropp, Jürgen P., Rybski, Diego

Combining global gridded population and fossil fuel based CO2 emission data at 1 km scale, we investigate the spatial origin of CO2 emissions in relation to the population distribution within countries. We depict the correlations between these two datasets by a quasi-Lorenz curve which enables us to discern the individual contributions of densely and sparsely populated regions to the national CO2 emissions. We observe pronounced country-specific characteristics and quantify them using an indicator resembling the Gini-index. As demonstrated by a robustness test, the Gini-index for each country arise from a compound distribution between the population and emissions which differs among countries. Relating these indices with the degree of socio-economic development measured by per capita Gross Domestic Product (GDP) at purchase power parity, we find a strong negative correlation between the two quantities with a Pearson correlation coefficient of -0.71. More specifically, this implies that in developing countries locations with large population tend to emit relatively more CO2, and in developed countries the opposite tends to be the case. Based on the relation to urban scaling, we discuss the implications for CO2 emissions from cities. Our results show that general statements with regard to the (in)efficiency of large cities should be avoided as it is subject to the socio-economic development of respective countries. Concerning the political relevance, our results suggest a differentiated spatial prioritization in deploying climate change mitigation measures in cities for developed and developing countries.

Loading...
Thumbnail Image
Item

Embodied crop calories in animal products

2013, Pradhan, Prajal, Lüdeke, Matthias K.B., Reusser, Dominik E., Kropp, Jürgen P.

Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8–2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these regions.