Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Anticipation-induced social tipping: can the environment be stabilised by social dynamics?

2021, Müller, Paul Manuel, Heitzig, Jobst, Kurths, Jürgen, Lüdge, Kathy, Wiedermann, Marc

In the past decades, human activities caused global Earth system changes, e.g., climate change or biodiversity loss. Simultaneously, these associated impacts have increased environmental awareness within societies across the globe, thereby leading to dynamical feedbacks between the social and natural Earth system. Contemporary modelling attempts of Earth system dynamics rarely incorporate such co-evolutions and interactions are mostly studied unidirectionally through direct or remembered past impacts. Acknowledging that societies have the additional capability for foresight, this work proposes a conceptual feedback model of socio-ecological co-evolution with the specific construct of anticipation acting as a mediator between the social and natural system. Our model reproduces results from previous sociological threshold models with bistability if one assumes a static environment. Once the environment changes in response to societal behaviour, the system instead converges towards a globally stable, but not necessarily desired, attractor. Ultimately, we show that anticipation of future ecological states then leads to metastability of the system where desired states can persist for a long time. We thereby demonstrate that foresight and anticipation form an important mechanism which, once its time horizon becomes large enough, fosters social tipping towards behaviour that can stabilise the environment and prevents potential socio-ecological collapse.

Loading...
Thumbnail Image
Item

Master Memory Function for Delay-Based Reservoir Computers With Single-Variable Dynamics

2022, Köster, Felix, Yanchuk, Serhiy, Lüdge, Kathy

We show that many delay-based reservoir computers considered in the literature can be characterized by a universal master memory function (MMF). Once computed for two independent parameters, this function provides linear memory capacity for any delay-based single-variable reservoir with small inputs. Moreover, we propose an analytical description of the MMF that enables its efficient and fast computation. Our approach can be applied not only to single-variable delay-based reservoirs governed by known dynamical rules, such as the Mackey–Glass or Stuart–Landau-like systems, but also to reservoirs whose dynamical model is not available.

Loading...
Thumbnail Image
Item

Timing jitter of passively mode-locked semiconductor lasers subject to optical feedback : a semi-analytic approach

2015, Jaurigue, Lina, Pimenov, Alexander, Rachinskii, Dmitrii, Schöll, Eckehard, Lüdge, Kathy, Vladimirov, Andrei G.

We propose a semi-analytical method of calculating the timing fluctuations in modelocked semiconductor lasers and apply it to study the effect of delayed coherent optical feedback on pulse timing jitter in these lasers. The proposed method greatly reduces computation times and therefore allows for the investigation of the dependence of timing fluctuations over greater parameter domains. We show that resonant feedback leads to a reduction in the timing jitter and that a frequency-pulling region forms about the main resonances, within which a timing jitter reduction is observed. The width of these requency pulling regions increases linearly with short feedback delay times. We derive an analytic expression for the timing jitter, which predicts a monotonic decrease in the timing jitter for resonant feedback of increasing delay lengths, when timing jitter effects are fully separated from amplitude jitter effects. For long feedback cavities the decrease in timing jitter scales approximately as 1/tau with the increase of the feedback delay time tau.