Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Electric current-driven spectral tunability of surface plasmon polaritons in gold coated tapered fibers

2018, Lühder, Tilman, Wieduwilt, Torsten, Schneidewind, Henrik, Schmidt, Markus A.

Here we introduce the concept of electrically tuning surface plasmon polaritons using current-driven heat dissipation, allowing controlling plasmonic properties via a straightforward-to-access quantity. The key idea is based on an electrical current flowing through the plasmonic layer, changing plasmon dispersion and phase-matching condition via a temperature-imposed modification of the refractive index of one of the dielectric media involved. This scheme was experimentally demonstrated on the example of an electrically connected plasmonic fiber taper that has sensitivities >50000 nm/RIU. By applying a current, dissipative heat generated inside metal film heats the surrounding liquid, reducing its refractive index correspondingly and thus modifying the phase-matching condition to the fundamental taper mode. We observed spectral shifts of the plasmonic resonance up to 300 nm towards shorter wavelength by an electrical power of ≤ 80 mW, clearly showing that our concept is important for applications that demand precise real-time and external control on plasmonic dispersion and resonance wavelengths.

Loading...
Thumbnail Image
Item

Understanding Nonlinear Pulse Propagation in Liquid Strand-Based Photonic Bandgap Fibers

2021, Qi, Xue, Schaarschmidt, Kay, Li, Guangrui, Junaid, Saher, Scheibinger, Ramona, Lühder, Tilman, Schmidt, Markus A.

Ultrafast supercontinuum generation crucially depends on the dispersive properties of the underlying waveguide. This strong dependency allows for tailoring nonlinear frequency conversion and is particularly relevant in the context of waveguides that include geometry-induced resonances. Here, we experimentally uncovered the impact of the relative spectral distance between the pump and the bandgap edge on the supercontinuum generation and in particular on the dispersive wave formation on the example of a liquid strand-based photonic bandgap fiber. In contrast to its air-hole-based counterpart, a bandgap fiber shows a dispersion landscape that varies greatly with wavelength. Particularly due to the strong dispersion variation close to the bandgap edges, nanometer adjustments of the pump wavelength result in a dramatic change of the dispersive wave generation (wavelength and threshold). Phase-matching considerations confirm these observations, additionally revealing the relevance of third order dispersion for interband energy transfer. The present study provides additional insights into the nonlinear frequency conversion of resonance-enhanced waveguide systems which will be relevant for both understanding nonlinear processes as well as for tailoring the spectral output of nonlinear fiber sources.