Search Results

Now showing 1 - 2 of 2
  • Item
    Non-thermal plasma modulates cellular markers associated with immunogenicity in a model of latent HIV-1 infection
    (San Francisco, California, US : PLOS, 2021) Mohamed, Hager; Clemen, Ramona; Freund, Eric; Lackmann, Jan-Wilm; Wende, Kristian; Connors, Jennifer; Haddad, Elias K.; Dampier, Will; Wigdahl, Brian; Miller, Vandana; Bekeschus, Sander; Krebs, Fred C.; Kashanchi, Fatah
    Effective control of infection by human immunodeficiency virus type 1 (HIV-1), the causative agent of the acquired immunodeficiency syndrome (AIDS), requires continuous and life-long use of anti-retroviral therapy (ART) by people living with HIV-1 (PLWH). In the absence of ART, HIV-1 reemergence from latently infected cells is ineffectively suppressed due to suboptimal innate and cytotoxic T lymphocyte responses. However, ART-free control of HIV-1 infection may be possible if the inherent immunological deficiencies can be reversed or restored. Herein we present a novel approach for modulating the immune response to HIV-1 that involves the use of non-thermal plasma (NTP), which is an ionized gas containing various reactive oxygen and nitrogen species (RONS). J-Lat cells were used as a model of latent HIV-1 infection to assess the effects of NTP application on viral latency and the expression of pro-phagocytic and pro-chemotactic damage-associated molecular patterns (DAMPs). Exposure of J-Lat cells to NTP resulted in stimulation of HIV-1 gene expression, indicating a role in latency reversal, a necessary first step in inducing adaptive immune responses to viral antigens. This was accompanied by the release of pro-inflammatory cytokines and chemokines including interleukin-1β (IL-1β) and interferon-γ (IFN-γ); the display of pro-phagocytic markers calreticulin (CRT), heat shock proteins (HSP) 70 and 90; and a correlated increase in macrophage phagocytosis of NTP-exposed J-Lat cells. In addition, modulation of surface molecules that promote or inhibit antigen presentation was also observed, along with an altered array of displayed peptides on MHC I, further suggesting methods by which NTP may modify recognition and targeting of cells in latent HIV-1 infection. These studies represent early progress toward an effective NTP-based ex vivo immunotherapy to resolve the dysfunctions of the immune system that enable HIV-1 persistence in PLWH.
  • Item
    Nitrosylation vs. oxidation – How to modulate cold physical plasmas for biological applications
    (San Francisco, California, US : PLOS, 2019) Lackmann, Jan-Wilm; Bruno, Giuliana; Jablonowski, Helena; Kogelheide, Friederike; Offerhaus, Björn; Held, Julian; Schulz-von der Gathen, Volker; Stapelmann, Katharina; von Woedtke, Thomas; Wende, Kristian
    Thiol moieties are major targets for cold plasma-derived nitrogen and oxygen species, making CAPs convenient tools to modulate redox-signaling pathways in cells and tissues. The underlying biochemical pathways are currently under investigation but especially the role of CAP derived RNS is barely understood. Their potential role in protein thiol nitrosylation would be relevant in inflammatory processes such as wound healing and improving their specific production by CAP would allow for enhanced treatment options beyond the current application. The impact of a modified kINPen 09 argon plasma jet with nitrogen shielding on cysteine as a thiol-carrying model substance was investigated by FTIR spectroscopy and high-resolution mass spectrometry. The deposition of short-lived radical species was measured by electron paramagnetic resonance spectroscopy, long-lived species were quantified by ion chromatography (NO2-, NO3-) and xylenol orange assay (H2O2). Product profiles were compared to samples treated with the so-called COST jet, being introduced by a European COST initiative as a reference device, using both reference conditions as well as conditions adjusted to kINPen gas mixtures. While thiol oxidation was dominant under all tested conditions, an Ar + N2/O2 gas compositions combined with a nitrogen curtain fostered nitric oxide deposition and the desired generation of S-nitrosocysteine. Interestingly, the COST-jet revealed significant differences in its chemical properties in comparison to the kINPen by showing a more stable production of RNS with different gas admixtures, indicating a different •NO production pathway. Taken together, results indicate various chemical properties of kINPen and COST-jet as well as highlight the potential of plasma tuning not only by gas admixtures alone but by adjusting the surrounding atmosphere as well.