Search Results

Now showing 1 - 4 of 4
  • Item
    Gas Plasma Technology Augments Ovalbumin Immunogenicity and OT-II T Cell Activation Conferring Tumor Protection in Mice
    (Weinheim : Wiley-VCH, 2021) Clemen, Ramona; Freund, Eric; Mrochen, Daniel; Miebach, Lea; Schmidt, Anke; Rauch, Bernhard H.; Lackmann, Jan‐Wilm; Martens, Ulrike; Wende, Kristian; Lalk, Michael; Delcea, Mihaela; Bröker, Barbara M.; Bekeschus, Sander
    Reactive oxygen species (ROS/RNS) are produced during inflammation and elicit protein modifications, but the immunological consequences are largely unknown. Gas plasma technology capable of generating an unmatched variety of ROS/RNS is deployed to mimic inflammation and study the significance of ROS/RNS modifications using the model protein chicken ovalbumin (Ova vs oxOva). Dynamic light scattering and circular dichroism spectroscopy reveal structural modifications in oxOva compared to Ova. T cells from Ova-specific OT-II but not from C57BL/6 or SKH-1 wild type mice presents enhanced activation after Ova addition. OxOva exacerbates this activation when administered ex vivo or in vivo, along with an increased interferon-gamma production, a known anti-melanoma agent. OxOva vaccination of wild type mice followed by inoculation of syngeneic B16F10 Ova-expressing melanoma cells shows enhanced T cell number and activation, decreased tumor burden, and elevated numbers of antigen-presenting cells when compared to their Ova-vaccinated counterparts. Analysis of oxOva using mass spectrometry identifies three hot spots regions rich in oxidative modifications that are associated with the increased T cell activation. Using Ova as a model protein, the findings suggest an immunomodulating role of multi-ROS/RNS modifications that may spur novel research lines in inflammation research and for vaccination strategies in oncology.
  • Item
    On the liquid chemistry of the reactive nitrogen species peroxynitrite and nitrogen dioxide generated by physical plasmas
    (Basel : MDPI, 2020) Bruno, Giuliana; Wenske, Sebastian; Lackmann, Jan-Wilm; Lalk, Michael; Von Woedtke, Thomas; Wende, Kristian
    Cold physical plasmas modulate cellular redox signaling processes, leading to the evolution of a number of clinical applications in recent years. They are a source of small reactive species, including reactive nitrogen species (RNS). Wound healing is a major application and, as its physiology involves RNS signaling, a correlation between clinical effectiveness and the activity of plasma‐derived RNS seems evident. To investigate the type and reactivity of plasma‐derived RNS in aqueous systems, a model with tyrosine as a tracer was utilized. By high‐resolution mass spectrometry, 26 different tyrosine derivatives including the physiologic nitrotyrosine were identified. The product pattern was distinctive in terms of plasma parameters, especially gas phase composition. By scavenger experiments and isotopic labelling, gaseous nitric dioxide radicals and liquid phase peroxynitrite ions were determined as dominant RNS. The presence of water molecules in the active plasma favored the generation of peroxynitrite. A pilot study, identifying RNS driven post‐translational modifications of proteins in healing human wounds after the treatment with cold plasma (kINPen), demonstrated the presence of in vitro determined chemical pathways. The plasma‐driven nitration and nitrosylation of tyrosine allows the conclusion that covalent modification of biomolecules by RNS contributes to the clinically observed impact of cold plasmas. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Self-assembled mono- and bilayers on gold electrodes to assess antioxidants—a comparative study
    (Berlin ; Heidelberg ; New York : Springer, 2020) Ravandeh, Mehdi; Thal, Dana; Kahlert, Heike; Wende, Kristian; Lalk, Michael
    Oxidative stress is considered as an imbalance of reactive species over antioxidants, leading to diseases and cell death. Various methods have been developed to determine the antioxidant potential of natural or synthetic compounds based on the ability to scavenge free radicals. However, most of them lack biological relevance. Here, a gold-based self-assembled monolayer (SAM) was compared with a gold-supported lipid bilayer as models for the mammalian cell membrane to evaluate the free radical scavenging activity of different antioxidants. The oxidative damage induced by reactive species was verified by cyclic and differential pulse voltammetry and measured by the increase of electrochemical peak current of a redox probe. Trolox, caffeic acid (CA), epigallocatechin gallate (EGCG), ascorbic acid (AA), and ferulic acid (FA) were used as model antioxidants. The change in the decrease of the electrochemical signal reflecting oxidative membrane damage confirms the expected protective role. Both model systems showed similar efficacies of each antioxidant, the achieved order of radical scavenging potential is as follows: Trolox > CA > EGCG > AA > FA. The results showed that the electrochemical assay with SAM-modified electrodes is a stable and powerful tool to estimate qualitatively the antioxidative activity of a compound with respect to cell membrane protection against biologically relevant reactive species. © 2020, The Author(s).
  • Item
    On a heavy path – determining cold plasma-derived short-lived species chemistry using isotopic labelling
    (London : RSC Publishing, 2020) Wende, Kristian; Bruno, Giuliana; Lalk, Michael; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Bekeschus, Sander; Lackmann, Jan-Wilm
    Cold atmospheric plasmas (CAPs) are promising medical tools and are currently applied in dermatology and epithelial cancers. While understanding of the biomedical effects is already substantial, knowledge on the contribution of individual ROS and RNS and the mode of activation of biochemical pathways is insufficient. Especially the formation and transport of short-lived reactive species in liquids remain elusive, a situation shared with other approaches involving redox processes such as photodynamic therapy. Here, the contribution of plasma-generated reactive oxygen species (ROS) in plasma liquid chemistry was determined by labeling these via admixing heavy oxygen 18O2 to the feed gas or by using heavy water H218O as a solvent for the bait molecule. The inclusion of heavy or light oxygen atoms by the labeled ROS into the different cysteine products was determined by mass spectrometry. While products like cysteine sulfonic acid incorporated nearly exclusively gas phase-derived oxygen species (atomic oxygen and/or singlet oxygen), a significant contribution of liquid phase-derived species (OH radicals) was observed for cysteine-S-sulfonate. The role, origin, and reaction mechanisms of short-lived species, namely hydroxyl radicals, singlet oxygen, and atomic oxygen, are discussed. Interactions of these species both with the target cysteine molecule as well as the interphase and the liquid bulk are taken into consideration to shed light onto several reaction pathways resulting in observed isotopic oxygen incorporation. These studies give valuable insight into underlying plasma–liquid interaction processes and are a first step to understand these interaction processes between the gas and liquid phase on a molecular level.