Search Results

Now showing 1 - 10 of 14
  • Item
    Galilean Bulk-Surface Electrothermodynamics and Applications to Electrochemistry
    (Basel : MDPI, 2023) Müller, Rüdiger; Landstorfer, Manuel
    In this work, the balance equations of non-equilibrium thermodynamics are coupled to Galilean limit systems of the Maxwell equations, i.e., either to (i) the quasi-electrostatic limit or (ii) the quasi-magnetostatic limit. We explicitly consider a volume (Formula presented.), which is divided into (Formula presented.) and (Formula presented.) by a possibly moving singular surface S, where a charged reacting mixture of a viscous medium can be present on each geometrical entity (Formula presented.). By the restriction to the Galilean limits of the Maxwell equations, we achieve that only subsystems of equations for matter and electromagnetic fields are coupled that share identical transformation properties with respect to observer transformations. Moreover, the application of an entropy principle becomes more straightforward and finally helps estimate the limitations of the more general approach based the full set of Maxwell equations. Constitutive relations are provided based on an entropy principle, and particular care is taken in the analysis of the stress tensor and the momentum balance in the general case of non-constant scalar susceptibility. Finally, we summarise the application of the derived model framework to an electrochemical system with surface reactions.
  • Item
    A Redlich-Kister type free energy model for Li-intercalation compounds with variable lattice occupation numbers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Landstorfer, Manuel
    One of the central quantities of a lithium ion intercalation compound is the open circuit potential, the voltage a battery material delivers in thermodynamic equilibrium. This voltage is related to the chemical potential of lithium in the insertion material and in general a non-linear function of the mole fraction of intercalated lithium. Experimental data shows further that it is specific for various materials. The open circuit voltage is a central ingredient for mathematical models of whole battery cells, which are used to investigate and simulate the charge and discharge behavior and to interpret experimental data on non-equilibrium processes. However, since no overall predictive theoretical method presently exists for the open circuit voltage, it is commonly fitted to experimental data. Simple polynomial fitting approaches are widely used, but they lack any thermodynamic interpretation. More recently systematically and thermodynamically motivated approaches are used to model the open circuit potential. We provide here an explicit free energy density which accounts for variable occupation numbers of Li on the intercalation lattice as well as RedlichKister-type enthalpy contributions. The derived chemical potential is validated by experimental data of Liy(Ni1/3Mn1/3Co1/3)O2 and we show that only two parameters are sufficient to obtain an overall agreement of the non-linear open circuit potential within the experimental error.
  • Item
    Thermodynamic models for a concentration and electric field dependent susceptibility in liquid electrolytes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Landstorfer, Manuel; Müller, Rüdiger
    The dielectric susceptibility $chi$ is an elementary quantity of the electrochemical double layer and the associated Poisson equation. While most often $chi$ is treated as a material constant, its dependency on the salt concentration in liquid electrolytes is demonstrated by various bulk electrolyte experiments. This is usually referred to as dielectric decrement. Further, it is theoretically well accepted that the susceptibility declines for large electric fields. This effect is frequently termed dielectric saturation. We analyze the impact of a variable susceptibility in terms of species concentrations and electric fields based on non-equilibrium thermodynamics. This reveals some non-obvious generalizations compared to the case of a constant susceptibility. In particular the consistent coupling of the Poisson equation, the momentum balance and the chemical potentials functions are of ultimate importance. In a numerical study, we systematically analyze the effects of a concentration and field dependent susceptibility on the double layer of a planar electrode electrolyte interface. We compute the differential capacitance and the spatial structure of the electric potential, solvent concentration and ionic distribution for various non-constant models of $chi$.
  • Item
    Modeling polycrystalline electrode-electrolyte interfaces: The differential capacitance
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Fuhrmann, Jürgen; Landstorfer, Manuel; Müller, Rüdiger
    We present and analyze a model for polycrystalline electrode surfaces based on an improved continuum model that takes finite ion size and solvation into account. The numerical simulation of finite size facet patterns allows to study two limiting cases: While for facet size diameter $d^facet to 0$ we get the typical capacitance of a spatially homogeneous but possible amorphous or liquid surface, in the limit $L^Debye << d^facet$ , an ensemble of non-interacting single crystal surfaces is approached. Already for moderate size of the facet diameters, the capacitance is remarkably well approximated by the classical approach of adding the single crystal capacities of the contributing facets weighted by their respective surface fraction. As a consequence, the potential of zero charge is not necessarily attained at a local minimum of capacitance, but might be located at a local capacitance maximum instead. Moreover, the results show that surface roughness can be accurately taken into account by multiplication of the ideally flat polycrystalline surface capacitance with a single factor. In particular, we find that the influence of the actual geometry of the facet pattern in negligible and our theory opens the way to a stochastic description of complex real polycrystal surfaces.
  • Item
    A mixture theory of electrolytes containing solvation effects
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Dreyer, Wolfgang; Guhlke, Clemens; Landstorfer, Manuel
    In this work we present a new mixture theory of a liquid solvent containing completely dissociated ions to study the space charge layer of electrolytes in contact with some inert metal. We incorporate solvation shell effects (i) in our derivation of the mixing entropy and (ii) in the pressure model. Chemical potentials of ions and solvent molecules in the incompressible limit are then derived from a free energy function. For the thermodynamic equilibrium the coupled equation system of mass and momentum balance, the incompressibility constraint and the Poisson equation are summarized. With that we study the space charge layer of the electrolytic solution for an applied half cell potential and compare our results to historic and recent interpretations of the double layer in liquid electrolytes. The novelties of the new model are: (i) coupling of momentum- and mass-balance equations, (ii) calculation of entropic contributions due to solvated ions and (iii) the potential and pressure dependence of the free charge density in equilibrium.
  • Item
    The partial molar volume and area of solvated ions and some aspects of partial charge transfer
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Landstorfer, Manuel
    The double layer capacity is one of the central quantities in theoretical and experimental electrochemistry of metal/electrolyte interfaces. It turns out that the capacity is related to two central thermodynamic quantities, i.e. the partial molar volume of an ionic constituent and the partial molar area of the respective adsorbate. Since ions in solution (or on the surface) accumulated solvent molecules in their solvation shell, the partial molar volume and area are effected by this phenomena. In this work we discuss several aspects of the relationship between the molar volume and area of an ion, the solvation number and the charge number. In addition, we account for partial charge transfer on the metal surface which explains naturally the difference of the capacity maxima between F and ClO 4 on silver. We provide simple yet validated analytical expressions for the partial molar volume and area of multi-valent ions and parameter values for aqueous solutions.
  • Item
    On the dissociation degree of ionic solutions considering solvation effects
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Landstorfer, Manuel
    In this work the impact of solvation effects on the dissociation degree of strong electrolytes and salts is discussed. The investigation is based on a thermodynamic model which is capable to predict qualitatively and quantitatively the double layer capacity of various electrolytes. A remarkable relationship between capacity maxima, partial molar volume of ions in solution, and solvation numbers, provides an experimental access to determine the number of solvent molecules bound to a specific ion in solution. This shows that the Stern layer is actually a saturated solution of 1 mol L 1 solvated ions, and we point out some fundamental similarities of this state to a saturated bulk solution. Our finding challenges the assumption of complete dissociation, even for moderate electrolyte concentrations, whereby we introduce an undissociated ion-pair in solution. We re-derive the equilibrium conditions for a two-step dissociation reaction, including solvation effects, which leads to a new relation to determine the dissociation degree. A comparison to Ostwalds dilution law clearly shows the shortcomings when solvation effects are neglected and we emphasize that complete dissociation is questionable beyond 0.5 mol L 1 for aqueous, mono-valent electrolytes.
  • Item
    Mesh generation for periodic 3D microstructure models and computation of effective properties
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Landstorfer, Manuel; Prifling, Benedikt; Schmidt, Volker
    Understanding and optimizing effective properties of porous functional materials, such as permeability or conductivity, is one of the main goals of materials science research with numerous applications. For this purpose, understanding the underlying 3D microstructure is crucial since it is well known that the materials? morphology has an significant impact on their effective properties. Because tomographic imaging is expensive in time and costs, stochastic microstructure modeling is a valuable tool for virtual materials testing, where a large number of realistic 3D microstructures can be generated and used as geometry input for spatially-resolved numerical simulations. Since the vast majority of numerical simulations is based on solving differential equations, it is essential to have fast and robust methods for generating high-quality volume meshes for the geometrically complex microstructure domains. The present paper introduces a novel method for generating volume-meshes with periodic boundary conditions based on an analytical representation of the 3D microstructure using spherical harmonics. Due to its generality, the present method is applicable to many scientific areas. In particular, we present some numerical examples with applications to battery research by making use of an already existing stochastic 3D microstructure model that has been calibrated to eight differently compacted cathodes.
  • Item
    Homogenization of a porous intercalation electrode with phase separation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Heida, Martin; Landstorfer, Manuel; Liero, Matthias
    In this work, we derive a new model framework for a porous intercalation electrode with a phase separating active material upon lithium intercalation. We start from a microscopic model consisting of transport equations for lithium ions in an electrolyte phase and intercalated lithium in a solid active phase. Both are coupled through a Neumann--boundary condition modeling the lithium intercalation reaction. The active material phase is considered to be phase separating upon lithium intercalation. We assume that the porous material is a given periodic microstructure and perform analytical homogenization. Effectively, the microscopic model consists of a diffusion and a Cahn--Hilliard equation, whereas the limit model consists of a diffusion and an Allen--Cahn equation. Thus we observe a Cahn--Hilliard to Allen--Cahn transition during the upscaling process. In the sense of gradient flows, the transition goes in hand with a change in the underlying metric structure of the PDE system.
  • Item
    A modeling framework for efficient reduced order simulations of parametrized lithium-ion battery cells
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Landstorfer, Manuel; Ohlberger, Mario; Rave, Stephan; Tacke, Marie
    In this contribution we present a new modeling and simulation framework for parametrized Lithium-ion battery cells. We first derive a new continuum model for a rather general intercalation battery cell on the basis of non-equilibrium thermodynamics. In order to efficiently evaluate the resulting parameterized non-linear system of partial differential equations the reduced basis method is employed. The reduced basis method is a model order reduction technique on the basis of an incremental hierarchical approximate proper orthogonal decomposition approach and empirical operator interpolation. The modeling framework is particularly well suited to investigate and quantify degradation effects of battery cells. Several numerical experiments are given to demonstrate the scope and efficiency of the modeling framework.