Search Results

Now showing 1 - 4 of 4
  • Item
    Divalent EuRh 2 Si 2 as a reference for the Luttinger theorem and antiferromagnetism in trivalent heavy-fermion YbRh 2 Si 2
    (London : Nature Publishing Group, 2019) Güttler, M.; Generalov, A.; Fujimori, S.I.; Kummer, K.; Chikina, A.; Seiro, S.; Danzenbächer, S.; Koroteev, Y.M.; Chulkov, E.V.; Radovic, M.; Shi, M.; Plumb, N.C.; Laubschat, C.; Allen, J.W.; Krellner, C.; Geibel, C.; Vyalikh, D.V.
    Application of the Luttinger theorem to the Kondo lattice YbRh 2 Si 2 suggests that its large 4f-derived Fermi surface (FS) in the paramagnetic (PM) regime should be similar in shape and volume to that of the divalent local-moment antiferromagnet (AFM) EuRh 2 Si 2 in its PM regime. Here we show by angle-resolved photoemission spectroscopy that paramagnetic EuRh 2 Si 2 has a large FS essentially similar to the one seen in YbRh 2 Si 2 down to 1 K. In EuRh 2 Si 2 the onset of AFM order below 24.5 K induces an extensive fragmentation of the FS due to Brillouin zone folding, intersection and resulting hybridization of the Fermi-surface sheets. Our results on EuRh 2 Si 2 indicate that the formation of the AFM state in YbRh 2 Si 2 is very likely also connected with similar changes in the FS, which have to be taken into account in the controversial analysis and discussion of anomalies observed at the quantum critical point in this system.
  • Item
    Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds
    (Cambridge : RSC Publ., 2020) Fernandez, L.; Blanco-Rey, M.; Castrillo-Bodero, R.; Ilyn, M.; Ali, K.; Turco, E.; Corso, M.; Ormaza, M.; Gargiani, P.; Valbuena, M.A.; Mugarza, A.; Moras, P.; Sheverdyaeva, P.M.; Kundu, Asish K.; Jugovac, M.; Laubschat, C.; Ortega, J.E.; Schiller, F.
    One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer. © The Royal Society of Chemistry.
  • Item
    Emerging 2D-ferromagnetism and strong spin-orbit coupling at the surface of valence-fluctuating EuIr2Si2
    (London : Nature Publishing Group, 2019) Schulz, S.; Nechaev, I.A.; Güttler, M.; Poelchen, G.; Generalov, A.; Danzenbächer, S.; Chikina, A.; Seiro, S.; Kliemt, K.; Vyazovskaya, A.Y.; Kim, T.K.; Dudin, P.; Chulkov, E.V.; Laubschat, C.; Krasovskii, E.E.; Geibel, C.; Krellner, C.; Kummer, K.; Vyalikh, D.V.
    The development of materials that are non-magnetic in the bulk but exhibit two-dimensional (2D) magnetism at the surface is at the core of spintronics applications. Here, we present the valence-fluctuating material EuIr2Si2, where in contrast to its non-magnetic bulk, the Si-terminated surface reveals controllable 2D ferromagnetism. Close to the surface the Eu ions prefer a magnetic divalent configuration and their large 4f moments order below 48 K. The emerging exchange interaction modifies the spin polarization of the 2D surface electrons originally induced by the strong Rashba effect. The temperature-dependent mixed valence of the bulk allows to tune the energy and momentum size of the projected band gaps to which the 2D electrons are confined. This gives an additional degree of freedom to handle spin-polarized electrons at the surface. Our findings disclose valence-fluctuating rare-earth based materials as a very promising basis for the development of systems with controllable 2D magnetic properties which is of interest both for fundamental science and applications.
  • Item
    Robust and tunable itinerant ferromagnetism at the silicon surface of the antiferromagnet GdRh2Si2
    (London : Nature Publishing Group, 2016) Güttler, M.; Generalov, A.; Otrokov, M.M.; Kummer, K.; Kliemt, K.; Fedorov, A.; Chikina, A.; Danzenbächer, S.; Schulz, S.; Chulkov, E.V.; Koroteev, Yu. M.; Caroca-Canales, N.; Shi, M.; Radovic, M.; Geibel, C.; Laubschat, C.; Dudin, P.; Kim, T.K.; Hoesch, M.; Krellner, C.; Vyalikh, D.V.
    Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.