Search Results

Now showing 1 - 2 of 2
  • Item
    Aerosol number-size distributions during clear and fog periods in the summer high Arctic: 1991, 1996 and 2001
    (Milton Park : Taylor & Francis, 2017) Heintzenberg, Jost; Leck, Caroline; Birmili, Wolfram; Wehner, Birgit; Tjernström, Michael; Wiedensohler, Alfred
    The present study covers submicrometer aerosol size distribution data taken during three Arctic icebreaker expeditions in the summers of 1991, 1996 and 2001. The size distributions of all expeditions were compared in log-normally fitted form to the statistics of the marine number size distribution provided by Heintzenberg et al. (2004) yielding rather similar log-normal parameters of the modes. Statistics of the modal concentrations revealed strong concentration decreases of large accumulation mode particles with increasing length of time spent over the pack ice. The travel-time dependencies of both Aitken and ultrafine modes strongly indicate, as other studies did before, the occurrence of fine-particle sources in the inner Arctic. With two approaches evidence of fog-related aerosol source processeswas sought for in the data sets of 1996 and 2001 because they included fog drop size distributions. With increasing fog intensity modes in interstitial particle number concentrations appeared in particular in the size range around 80 nm that was nearly mode free in clear air. A second, dynamic approach revealed that Aitken mode concentrations increased strongly above their respective fog-period medians in both years before maximum drop numbers were reached in both years. We interpret the results of both approaches as strong indications of fog-related aerosol source processes as discussed in Leck and Bigg (1999) that need to be elucidated with further data from dedicated fog experiments in future Arctic expeditions in order to understand the life cycle of the aerosol over the high Arctic pack ice area.
  • Item
    Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn
    (Milton Park : Taylor & Francis, 2017) Wiedensohler, Alfred; Covert, David S.; Swietlicki, Erik; Aalto, Pasi; Heintzenberg, Jost; Leck, Caroline
    The International Arctic Ocean Expedition 1991 (IAOE-91) provided a platform to study the occurrence and size distributions of ultrafine particles in the marine boundary layer (MBL) during Arctic summer and autumn. Measurements of both aerosol physics, and gas/particulate chemistry were taken aboard the Swedish icebreaker Oden. Three separate submicron aerosol modes were found: an ultrafine mode (Dp < 20 nm), the Aitken mode (20 < Dp < 100 nm), and the accumulation mode (Dp > 100 nm). We evaluated correlations between ultrafine particle number concentrations and mean diameter with the entire measured physical, chemical, and meteorological data set. Multivariate statistical methods were then used to make these comparisons. A principal component (PC) analysis indicated that the observed variation in the data could be explained by the influence from several types of air masses. These were characterised by contributions from the open sea or sources from the surrounding continents and islands. A partial least square (PLS) regression of the ultrafine particle concentration was also used. These results implied that the ultrafine particles were produced above or in upper layers of the MBL and mixed downwards. There were also indications that the open sea acted as a source of the precursors for ultrafine particle production. No anti-correlation was found between the ultrafine and accumulation particle number concentrations, thus indicating that the sources were in separate air masses.