Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Symmetry‐Induced Selective Excitation of Topological States in Su–Schrieffer–Heeger Waveguide Arrays

2023, Tang, Min, Wang, Jiawei, Valligatla, Sreeramulu, Saggau, Christian N., Dong, Haiyun, Saei Ghareh Naz, Ehsan, Klembt, Sebastian, Lee, Ching Hua, Thomale, Ronny, van den Brink, Jeroen, Fulga, Ion Cosma, Schmidt, Oliver G., Ma, Libo

The investigation of topological state transition in carefully designed photonic lattices is of high interest for fundamental research, as well as for applied studies such as manipulating light flow in on-chip photonic systems. Herein, the topological phase transition between symmetric topological zero modes (TZM) and antisymmetric TZMs in Su–Schrieffer–Heeger mirror symmetric waveguides is reported. The transition of TZMs is realized by adjusting the coupling ratio between neighboring waveguide pairs, which is enabled by selective modulation of the refractive index in the waveguide gaps. Bidirectional topological transitions between symmetric and antisymmetric TZMs can be achieved with proposed switching strategy. Selective excitation of topological edge mode is demonstrated owing to the symmetry characteristics of the TZMs. The flexible manipulation of topological states is promising for on-chip light flow control and may spark further investigations on symmetric/antisymmetric TZM transitions in other photonic topological frameworks.

Loading...
Thumbnail Image
Item

Experimental observation of Berry phases in optical Möbius-strip microcavities

2022, Wang, Jiawei, Valligatla, Sreeramulu, Yin, Yin, Schwarz, Lukas, Medina-Sánchez, Mariana, Baunack, Stefan, Lee, Ching Hua, Thomale, Ronny, Li, Shilong, Fomin, Vladimir M., Ma, Libo, Schmidt, Oliver G.

The Möbius strip, a fascinating loop structure with one-sided topology, provides a rich playground for manipulating the non-trivial topological behaviour of spinning particles, such as electrons, polaritons and photons, in both real and parameter spaces. For photons resonating in a Möbius-strip cavity, the occurrence of an extra phase—known as the Berry phase—with purely topological origin is expected due to its non-trivial evolution in parameter space. However, despite numerous theoretical investigations, characterizing the optical Berry phase in a Möbius-strip cavity has remained elusive. Here we report the experimental observation of the Berry phase generated in optical Möbius-strip microcavities. In contrast to theoretical predictions in optical, electronic and magnetic Möbius-topology systems where only Berry phase π occurs, we demonstrate that a variable Berry phase smaller than π can be acquired by generating elliptical polarization of resonating light. Möbius-strip microcavities as integrable and Berry-phase-programmable optical systems are of great interest in topological physics and emerging classical or quantum photonic applications.