Search Results

Now showing 1 - 4 of 4
  • Item
    Yields and Immunomodulatory Effects of Pneumococcal Membrane Vesicles Differ with the Bacterial Growth Phase
    (Weinheim : Wiley-VCH, 2021) Mehanny, Mina; Kroniger, Tobias; Koch, Marcus; Hoppstädter, Jessica; Becher, Dörte; Kiemer, Alexandra K.; Lehr, Claus-Michael; Fuhrmann, Gregor
    Streptococcus pneumoniae infections are a leading cause of death worldwide. Bacterial membrane vesicles (MVs) are promising vaccine candidates because of the antigenic components of their parent microorganisms. Pneumococcal MVs exhibit low toxicity towards several cell lines, but their clinical translation requires a high yield and strong immunogenic effects without compromising immune cell viability. MVs are isolated during either the stationary phase (24 h) or death phase (48 h), and their yields, immunogenicity and cytotoxicity in human primary macrophages and dendritic cells have been investigated. Death-phase vesicles showed higher yields than stationary-phase vesicles. Both vesicle types displayed acceptable compatibility with primary immune cells and several cell lines. Both vesicle types showed comparable uptake and enhanced release of the inflammatory cytokines, tumor necrosis factor and interleukin-6, from human primary immune cells. Proteomic analysis revealed similarities in vesicular immunogenic proteins such as pneumolysin, pneumococcal surface protein A, and IgA1 protease in both vesicle types, but stationary-phase MVs showed significantly lower autolysin levels than death-phase MVs. Although death-phase vesicles produced higher yields, they lacked superiority to stationary-phase vesicles as vaccine candidates owing to their similar antigenic protein cargo and comparable uptake into primary human immune cells.
  • Item
    An Outer Membrane Vesicle-Based Permeation Assay (OMPA) for Assessing Bacterial Bioavailability
    (Weinheim : Wiley-VCH, 2021) Richter, Robert; Kamal, Mohamed A.M.; Koch, Marcus; Niebuur, Bart-Jan; Huber, Anna-Lena; Goes, Adriely; Volz, Carsten; Vergalli, Julia; Kraus, Tobias; Müller, Rolf; Schneider-Daum, Nicole; Fuhrmann, Gregor; Pagès, Jean-Marie; Lehr, Claus-Michael
    When searching for new antibiotics against Gram-negative bacterial infections, a better understanding of the permeability across the cell envelope and tools to discriminate high from low bacterial bioavailability compounds are urgently needed. Inspired by the phospholipid vesicle-based permeation assay (PVPA), which is designed to predict non-facilitated permeation across phospholipid membranes, outer membrane vesicles (OMVs) of Escherichia coli either enriched or deficient of porins are employed to coat filter supports for predicting drug uptake across the complex cell envelope. OMVs and the obtained in vitro model are structurally and functionally characterized using cryo-TEM, SEM, CLSM, SAXS, and light scattering techniques. In vitro permeability, obtained from the membrane model for a set of nine antibiotics, correlates with reported in bacterio accumulation data and allows to discriminate high from low accumulating antibiotics. In contrast, the correlation of the same data set generated by liposome-based comparator membranes is poor. This better correlation of the OMV-derived membranes points to the importance of hydrophilic membrane components, such as lipopolysaccharides and porins, since those features are lacking in liposomal comparator membranes. This approach can offer in the future a high throughput screening tool with high predictive capacity or can help to identify compound- and bacteria-specific passive uptake pathways.
  • Item
    Targeting extracellular lectins of Pseudomonas aeruginosa with glycomimetic liposomes
    (London [u.a.] : RSC, 2021) Metelkina, Olga; Huck, Benedikt; O'Connor, Jonathan S.; Koch, Marcus; Manz, Andreas; Lehr, Claus-Michael; Titz, Alexander
    The antimicrobial resistance crisis requires novel approaches for the therapy of infections especially with Gram-negative pathogens. Pseudomonas aeruginosa is defined as priority 1 pathogen by the WHO and thus of particular interest. Its drug resistance is primarily associated with biofilm formation and essential constituents of its extracellular biofilm matrix are the two lectins, LecA and LecB. Here, we report microbial lectin-specific targeted nanovehicles based on liposomes. LecA- and LecB-targeted phospholipids were synthesized and used for the preparation of liposomes. These liposomes with varying surface ligand density were then analyzed for their competitive and direct lectin binding activity. We have further developed a microfluidic device that allowed the optical detection of the targeting process to the bacterial lectins. Our data showed that the targeted liposomes are specifically binding to their respective lectin and remain firmly attached to surfaces containing these lectins. This synthetic and biophysical study provides the basis for future application in targeted antibiotic delivery to overcome antimicrobial resistance.
  • Item
    Kinetics of mRNA delivery and protein translation in dendritic cells using lipid-coated PLGA nanoparticles
    (London : Biomed Central, 2018) Yasar, Hanzey; Biehl, Alexander; De Rossi, Chiara; Koch, Marcus; Murgia, Xabi; Loretz, Brigitta; Lehr, Claus-Michael
    Background: Messenger RNA (mRNA) has gained remarkable attention as an alternative to DNA-based therapies in biomedical research. A variety of biodegradable nanoparticles (NPs) has been developed including lipid-based and polymer-based systems for mRNA delivery. However, both systems still lack in achieving an efficient transfection rate and a detailed understanding of the mRNA transgene expression kinetics. Therefore, quantitative analysis of the time-dependent translation behavior would provide a better understanding of mRNA's transient nature and further aid the enhancement of appropriate carriers with the perspective to generate future precision nanomedicines with quick response to treat various diseases. Results: A lipid-polymer hybrid system complexed with mRNA was evaluated regarding its efficiency to transfect dendritic cells (DCs) by simultaneous live cell video imaging of both particle uptake and reporter gene expression. We prepared and optimized NPs consisting of poly (lactid-co-glycolid) (PLGA) coated with the cationic lipid 1, 2-di-O-octadecenyl-3-trimethylammonium propane abbreviated as LPNs. An earlier developed polymer-based delivery system (chitosan-PLGA NPs) served for comparison. Both NPs types were complexed with mRNA-mCherry at various ratios. While cellular uptake and toxicity of either NPs was comparable, LPNs showed a significantly higher transfection efficiency of ~ 80% while chitosan-PLGA NPs revealed only ~ 5%. Further kinetic analysis elicited a start of protein translation after 1 h, with a maximum after 4 h and drop of transgene expression after 48 h post-transfection, in agreement with the transient nature of mRNA. Conclusions: Charge-mediated complexation of mRNA to NPs enables efficient and fast cellular delivery and subsequent protein translation. While cellular uptake of both NP types was comparable, mRNA transgene expression was superior to polymer-based NPs when delivered by lipid-polymer NPs.