Search Results

Now showing 1 - 2 of 2
  • Item
    Enhanced uptake and siRNA-mediated knockdown of a biologically relevant gene using cyclodextrin polyrotaxane
    (Cambridge : Royal Society of Chemistry, 2015) Dandekar, P.; Jain, R.; Keil, M.; Loretz, B.; Koch, Marcus; Wenz, G.; Lehr, Claus-Michael
    Ideal cationic polymers for siRNA delivery could result in its enhanced cellular internalization, escape from endosomal degradation, and rapid release in cell cytoplasm, to facilitate knockdown of the target gene. In this study, we have investigated the ability of an in-house synthesized cationic polyrotaxane to bind siRNA into nanometric complexes. This polymer, which had earlier shown improved transfection of model siRNA (luciferase), was used to improve the cellular internalization of the siRNA molecule with therapeutic implications. In cellular assays, the polymer enhanced the knockdown of a gene involved in the pathogenesis of tuberculosis, when the nanocomplexes were compared with free siRNA. The efficacy and cellular non-toxicity of this polymer encourage its further exploitation in animal models of tuberculosis and other intracellular bacterial infections.
  • Item
    Dimethylaminoethyl methacrylate copolymer-siRNA nanoparticles for silencing a therapeutically relevant gene in macrophages
    (Cambridge : Royal Society of Chemistry, 2015) Jain, Ratnesh; Dandekar, Prajakta; Loretz, Brigitta; Koch, Marcus; Lehr, Claus-Michael
    Therapeutic gene silencing using small-interfering RNA (siRNA) for treatment of bacterial infections has been neglected in comparison with cancer and viral infections. The aim of our investigation was to formulate siRNA-loaded nanoparticles, using an established cationic polymethacrylate polymer, to enhance the delivery of siRNA into the cytoplasm of macrophages that host many pathogenic bacterial species, including tuberculosis. Nanoparticles of cationic dimethylaminoethyl methacrylate copolymer (Eudragit[registered sign] E 100) were successfully formulated and were found to efficiently bind the siRNA molecules (Cy3-siRNA, Bfl1/A1 siRNA). The efficiency of nanoparticles in overcoming cellular barriers to intracellular siRNA delivery and the precise pathway of endocytosis of nanoparticles were both confirmed using confocal microscopy. Through efficient siRNA release into the cytoplasm, the siRNA-loaded nanoparticles enabled a five-fold enhancement in the knockdown efficiency of the endogenous host gene Bfl1/A1, when the formulation was compared with free siRNA. Persistence of Bfl1/A1 is useful for phagolysosomal survival of tuberculosis bacteria in macrophages, and the nanoparticles offer a promising concept for exploitation as an anti-tuberculosis therapy.