Search Results

Now showing 1 - 10 of 10
  • Item
    A statistical proxy for sulphuric acid concentration
    (München : European Geopyhsical Union, 2011) Mikkonen, S.; Romakkaniemi, S.; Smith, J.N.; Korhonen, H.; Petäjä, T.; Plass-Duelmer, C.; Boy, M.; McMurry, P.H.; Lehtinen, K.E.J.; Joutsensaari, J.; Hamed, A.; Mauldin III, R.L.; Birmili, W.; Spindler, G.; Arnold, F.; Kulmala, M.; Laaksonen, A.
    Gaseous sulphuric acid is a key precursor for new particle formation in the atmosphere. Previous experimental studies have confirmed a strong correlation between the number concentrations of freshly formed particles and the ambient concentrations of sulphuric acid. This study evaluates a body of experimental gas phase sulphuric acid concentrations, as measured by Chemical Ionization Mass Spectrometry (CIMS) during six intensive measurement campaigns and one long-term observational period. The campaign datasets were measured in Hyytiälä, Finland, in 2003 and 2007, in San Pietro Capofiume, Italy, in 2009, in Melpitz, Germany, in 2008, in Atlanta, Georgia, USA, in 2002, and in Niwot Ridge, Colorado, USA, in 2007. The long term data were obtained in Hohenpeissenberg, Germany, during 1998 to 2000. The measured time series were used to construct proximity measures ("proxies") for sulphuric acid concentration by using statistical analysis methods. The objective of this study is to find a proxy for sulfuric acid that is valid in as many different atmospheric environments as possible. Our most accurate and universal formulation of the sulphuric acid concentration proxy uses global solar radiation, SO2 concentration, condensation sink and relative humidity as predictor variables, yielding a correlation measure (R) of 0.87 between observed concentration and the proxy predictions. Interestingly, the role of the condensation sink in the proxy was only minor, since similarly accurate proxies could be constructed with global solar radiation and SO2 concentration alone. This could be attributed to SO2 being an indicator for anthropogenic pollution, including particulate and gaseous emissions which represent sinks for the OH radical that, in turn, is needed for the formation of sulphuric acid.
  • Item
    Changes in the production rate of secondary aerosol particles in Central Europe in view of decreasing SO2 emissions between 1996 and 2006
    (München : European Geopyhsical Union, 2010) Hamed, A.; Birmili, W.; Joutsensaari, J.; Mikkonen, S.; Asmi, A.; Wehner, B.; Spindler, G.; Jaatinen, A.; Wiedensohler, A.; Korhonen, H.; Lehtinen, K.E.J.; Laaksonen, A.
    In anthropogenically influenced atmospheres, sulphur dioxide (SO2) is the main precursor of gaseous sulphuric acid (H2SO4), which in turn is a main precursor for atmospheric particle nucleation. As a result of socio-economic changes, East Germany has seen a dramatic decrease in anthropogenic SO2 emissions between 1989 and present, as documented by routine air quality measurements in many locations. We have attempted to evaluate the influence of changing SO2 concentrations on the frequency and intensity of new particle formation (NPF) using two different data sets (1996–1997; 2003–2006) of experimental particle number size distributions (diameter range 3–750 nm) from the atmospheric research station Melpitz near Leipzig, Germany. Between the two periods SO2 concentrations decreased by 65% on average, while the frequency of NPF events dropped by 45%. Meanwhile, the average formation rate of 3 nm particles decreased by 68% on average. The trends were statistically significant and therefore suggest a connection between the availability of anthropogenic SO2 and freshly formed new particles. In contrast to the decrease in new particle formation, we found an increase in the mean growth rate of freshly nucleated particles (+22%), suggesting that particle nucleation and subsequent growth into larger sizes are delineated with respect to their precursor species. Using three basic parameters, the condensation sink for H2SO4, the SO2 concentration, and the global radiation intensity, we were able to define the characteristic range of atmospheric conditions under which particle formation events take place at the Melpitz site. While the decrease in the concentrations and formation rates of the new particles was rather evident, no similar decrease was found with respect to the generation of cloud condensation nuclei (CCN; particle diameter >100 nm) as a result of atmospheric nucleation events. On the contrary, the production of CCN following nucleation events appears to have increased by tens of percents. Our aerosol dynamics model simulations suggest that such an increase can be caused by the increased particle growth rate.
  • Item
    One year of Raman lidar observations of free-tropospheric aerosol layers over South Africa
    (München : European Geopyhsical Union, 2015) Giannakaki, E.; Pfüller, A.; Korhonen, K.; Mielonen, T.; Laakso, L.; Vakkari, V.; Baars, H.; Engelmann, R.; Beukes, J.P.; Van Zyl, P.G.; Josipovic, M.; Tiitta, P.; Chiloane, K.; Piketh, S.; Lihavainen, H.; Lehtinen, K.E.J.; Komppula, M.
    Raman lidar data obtained over a 1 year period has been analysed in relation to aerosol layers in the free troposphere over the Highveld in South Africa. In total, 375 layers were observed above the boundary layer during the period 30 January 2010 to 31 January 2011. The seasonal behaviour of aerosol layer geometrical characteristics, as well as intensive and extensive optical properties were studied. The highest centre heights of free-tropospheric layers were observed during the South African spring (2520 ± 970 m a.g.l., also elsewhere). The geometrical layer depth was found to be maximum during spring, while it did not show any significant difference for the rest of the seasons. The variability of the analysed intensive and extensive optical properties was high during all seasons. Layers were observed at a mean centre height of 2100 ± 1000 m with an average lidar ratio of 67 ± 25 sr (mean value with 1 standard deviation) at 355 nm and a mean extinction-related Ångström exponent of 1.9 ± 0.8 between 355 and 532 nm during the period under study. Except for the intensive biomass burning period from August to October, the lidar ratios and Ångström exponents are within the range of previous observations for urban/industrial aerosols. During Southern Hemispheric spring, the biomass burning activity is clearly reflected in the optical properties of the observed free-tropospheric layers. Specifically, lidar ratios at 355 nm were 89 ± 21, 57 ± 20, 59 ± 22 and 65 ± 23 sr during spring (September–November), summer (December–February), autumn (March–May) and winter (June–August), respectively. The extinction-related Ångström exponents between 355 and 532 nm measured during spring, summer, autumn and winter were 1.8 ± 0.6, 2.4 ± 0.9, 1.8 ± 0.9 and 1.8 ± 0.6, respectively. The mean columnar aerosol optical depth (AOD) obtained from lidar measurements was found to be 0.46 ± 0.35 at 355 nm and 0.25 ± 0.2 at 532 nm. The contribution of free-tropospheric aerosols on the AOD had a wide range of values with a mean contribution of 46%.
  • Item
    Technical Note: One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India – Seasonal characteristics of the aerosol vertical structure
    (München : European Geopyhsical Union, 2012) Komppula, M.; Mielonen, T.; Arola, A.; Korhonen, K.; Lihavainen, H.; Hyvärinen, A.-P.; Baars, H.; Engelmann, R.; Althausen, D.; Ansmann, A.; Müller, D.; Panwar, T.S.; Hooda, R.K.; Sharma, V.P.; Kerminen, V.-M.; Lehtinen, K.E.J.; Viisanen, Y.
    One year of multi-wavelength (3 backscatter + 2 extinction + 1 depolarization) Raman lidar measurements at Gual Pahari, close to New Delhi, were analysed. The data was split into four seasons: spring (March–May), summer (June–August), autumn (September–November) and winter (December–February). The vertical profiles of backscatter, extinction, and lidar ratio and their variability during each season are presented. The measurements revealed that, on average, the aerosol layer was at its highest in spring (5.5 km). In summer, the vertically averaged (between 1–3 km) backscatter and extinction coefficients had the highest averages (3.3 Mm−1 sr−1 and 142 Mm−1 at 532 nm, respectively). Aerosol concentrations were slightly higher in summer compared to other seasons, and particles were larger in size. The autumn showed the highest lidar ratio and high extinction-related Ångström exponents (AEext), indicating the presence of smaller probably absorbing particles. The winter had the lowest backscatter and extinction coefficients, but AEext was the highest, suggesting still a large amount of small particles.
  • Item
    General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales
    (München : European Geopyhsical Union, 2011) Kulmala, M.; Asmi, A.; Lappalainen, H.K.; Carslaw, K.S.; Pöschl, U.; Baltensperger, U.; Hov, Ø.; Brenquier, J.-L.; Pandis, S.N.; Facchini, M.C.; Hansson, H.-C.; Wiedensohler, A.; O'Dowd, C.D.; Boers, R.; Boucher, O.; de Leeuw, G.; Denier van der Gon, H.A.C.; Feichter, J.; Krejci, R.; Laj, P.; Lihavainen, H.; Lohmann, U.; McFiggans, G.; Mentel, T.; Pilinis, C.; Riipinen, I.; Schulz, M.; Stohl, A.; Swietlicki, E.; Vignati, E.; Alves, C.; Amann, M.; Ammann, M.; Arabas, S.; Artaxo, P.; Baars, H.; Beddows, D.C.S.; Bergström, R.; Beukes, J.P.; Bilde, M.; Burkhart, J.F.; Canonaco, F.; Clegg, S.L.; Coe, H.; Crumeyrolle, S.; D'Anna, B.; Decesari, S.; Gilardoni, S.; Fischer, M.; Fjaeraa, A.M.; Fountoukis, C.; George, C.; Gomes, L.; Halloran, P.; Hamburger, T.; Harrison, R.M.; Herrmann, H.; Hoffmann, T.; Hoose, C.; Hu, M.; Hyvärinen, A.; Hõrrak, U.; Iinuma, Y.; Iversen, T.; Josipovic, M.; Kanakidou, M.; Kiendler-Scharr, A.; Kirkevåg, A.; Kiss, G.; Klimont, Z.; Kolmonen, P.; Komppula, M.; Kristjánsson, J.-E.; Laakso, L.; Laaksonen, A.; Labonnote, L.; Lanz, V.A.; Lehtinen, K.E.J.; Rizzo, L.V.; Makkonen, R.; Manninen, H.E.; McMeeking, G.; Merikanto, J.; Minikin, A.; Mirme, S.; Morgan, W.T.; Nemitz, E.; O'Donnell, D.; Panwar, T.S.; Pawlowska, H.; Petzold, A.; Pienaar, J.J.; Pio, C.; Plass-Duelmer, C.; Prévôt, A.S.H.; Pryor, S.; Reddington, C.L.; Roberts, G.; Rosenfeld, D.; Schwarz, J.; Seland, Ø.; Sellegri, K.; Shen, X.J.; Shiraiwa, M.; Siebert, H.; Sierau, B.; Simpson, D.; Sun, J.Y.; Topping, D.; Tunved, P.; Vaattovaara, P.; Vakkari, V.; Veefkind, J.P.; Visschedijk, A.; Vuollekoski, H.; Vuolo, R.; Wehner, B.; Wildt, J.; Woodward, S.; Worsnop, D.R.; van Zadelhoff, G.-J.; Zardini, A.A.; Zhang, K.; van Zyl, P.G.; Kerminen, V.-M.
    In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan-European aerosol emissions inventory was developed and evaluated, a new cluster spectrometer was built and tested in the field and several new aerosol parameterizations and computations modules for chemical transport and global climate models were developed and evaluated. These achievements and related studies have substantially improved our understanding and reduced the uncertainties of aerosol radiative forcing and air quality-climate interactions. The EUCAARI results can be utilized in European and global environmental policy to assess the aerosol impacts and the corresponding abatement strategies.
  • Item
    SO2 oxidation products other than H2SO4 as a trigger of new particle formation. Part 2: Comparison of ambient and laboratory measurements, and atmospheric implications
    (München : European Geopyhsical Union, 2008) Laaksonen, A.; Kulmala, M.; Bernd, T.; Stratmann, F.; Mikkonen, S.; Ruuskanen, A.; Lehtinen, K.E.J.; Dal Maso, M.; Aalto, P.; Petäjä, T.; Riipinen, I.; Sihto, S.-L.; Janson, R.; Arnold, F.; Hanke, M.; Ücker, J.; Umann, B.; Sellegri, K.; O'Dowd, C.D.; Viisanen, Y.
    Atmospheric new particle formation is generally thought to occur due to homogeneous or ion-induced nucleation of sulphuric acid. We compare ambient nucleation rates with laboratory data from nucleation experiments involving either sulphuric acid or oxidized SO2. Atmospheric nucleation occurs at H2SO4 concentrations 2–4 orders of magnitude lower than binary or ternary nucleation rates of H2SO4 produced from a liquid reservoir, and atmospheric H2SO4 concentrations are very well replicated in the SO2 oxidation experiments. We hypothesize these features to be due to the formation of free HSO5 radicals in pace with H2SO4 during the SO2 oxidation. We suggest that at temperatures above ~250 K these radicals produce nuclei of new aerosols much more efficiently than H2SO4. These nuclei are activated to further growth by H2SO4 and possibly other trace species. However, at lower temperatures the atmospheric relative acidity is high enough for the H2SO4–H2O nucleation to dominate.
  • Item
    A new feedback mechanism linking forests, aerosols, and climate
    (München : European Geopyhsical Union, 2004) Kulmala, M.; Suni, T.; Lehtinen, K.E.J.; Dal Maso, M.; Boy, M.; Reissell, A.; Rannik, Ü.; Aalto, P.; Keronen, P.; Hakola, H.; Bäck, J.; Hoffmann, T.; Vesala, T.; Hari, P.
    The possible connections between the carbon balance of ecosystems and aerosol-cloud-climate interactions play a significant role in climate change studies. Carbon dioxide is a greenhouse gas, whereas the net effect of atmospheric aerosols is to cool the climate. Here, we investigated the connection between forest-atmosphere carbon exchange and aerosol dynamics in the continental boundary layer by means of multiannual data sets of particle formation and growth rates, of CO2 fluxes, and of monoterpene concentrations in a Scots pine forest in southern Finland. We suggest a new, interesting link and a potentially important feedback among forest ecosystem functioning, aerosols, and climate: Considering that globally increasing temperatures and CO2 fertilization are likely to lead to increased photosynthesis and forest growth, an increase in forest biomass would increase emissions of non-methane biogenic volatile organic compounds and thereby enhance organic aerosol production. This feedback mechanism couples the climate effect Of CO2 with that of aerosols in a novel way.
  • Item
    Connections between atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in Heidelberg and Hyytiälä
    (München : European Geopyhsical Union, 2007) Riipinen, I.; Pringle, S.-L.; Kulmala, M.; Arnold, F.; Dal Maso, M.; Birmili, W.; Saarnio, K.; Teinilä, K.; Kerminen, V.-M.; Laaksonen, A.; Lehtinen, K.E.J.
    This study investigates the connections between atmospheric sulphuric acid and new particle formation during QUEST III and BACCI/QUEST IV campaigns. The campaigns have been conducted in Heidelberg (2004) and Hyytiälä (2005), the first representing a polluted site surrounded by deciduous forest, and the second a rural site in a boreal forest environment. We have studied the role of sulphuric acid in particle formation and growth by determining 1) the power-law dependencies between sulphuric acid ([H2SO4]), and particle concentrations (N3–6) or formation rates at 1 nm and 3 nm (J1 and J3); 2) the time delays between [H2SO4] and N3–6 or J3, and the growth rates for 1–3 nm particles; 3) the empirical nucleation coefficients A and K in relations J1=A[H2SO4] and J1=K[H2SO4]2, respectively; 4) theoretical predictions for J1 and J3 for the days when no significant particle formation is observed, based on the observed sulphuric acid concentrations and condensation sinks. In both environments, N3–6 or J3 and [H2SO4] were linked via a power-law relation with exponents typically ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation have the potential to explain the observed particle formation. However, some differences between the sites existed: The nucleation coefficients were about an order of magnitude greater in Heidelberg than in Hyytiälä conditions. The time lags between J3 and [H2SO4] were consistently lower than the corresponding delays between N3–6 and [H2SO4]. The exponents in the J3∝[H2SO4 ]nJ3-connection were consistently higher than or equal to the exponents in the relation N3–6∝[H2SO4 ]nN36. In the J1 values, no significant differences were found between the observed rates on particle formation event days and the predictions on non-event days. The J3 values predicted by the cluster activation or kinetic nucleation hypotheses, on the other hand, were considerably lower on non-event days than the rates observed on particle formation event days. This study provides clear evidence implying that the main process limiting the observable particle formation is the competition between the growth of the freshly formed particles and their loss by scavenging, rather than the initial particle production by nucleation of sulphuric acid. In general, it can be concluded that the simple models based on sulphuric acid concentrations and particle formation by cluster activation or kinetic nucleation can predict the occurence of atmospheric particle formation and growth well, if the particle scavenging is accurately accounted for.
  • Item
    Characterization of satellite-based proxies for estimating nucleation mode particles over South Africa
    (München : European Geopyhsical Union, 2015) Sundström, A.-M.; Nikandrova, A.; Atlaskina, K.; Nieminen, T.; Laakso, L.; Vakkari, V.; Baars, H.; Engelmann, R.; Beukes, J.P.; Van Zyl, P.G.; Josipovic, M.; Tiitta, P.; Chiloane, K.; Piketh, S.; Lihavainen, H.; Lehtinen, K.E.J.; Komppula, M.
    Proxies for estimating nucleation mode number concentrations and further simplification for their use with satellite data have been presented in Kulmala et al. (2011). In this paper we discuss the underlying assumptions for these simplifications and evaluate the resulting proxies over an area in South Africa based on a comparison with a suite of ground-based measurements available from four different stations. The proxies are formulated in terms of sources (concentrations of precursor gases (NO2 and SO2) and UVB radiation intensity near the surface) and a sink term related to removal of the precursor gases due to condensation on pre-existing aerosols. A-Train satellite data are used as input to compute proxies. Both the input data and the resulting proxies are compared with those obtained from ground-based measurements. In particular, a detailed study is presented on the substitution of the local condensation sink (CS) with satellite aerosol optical depth (AOD), which is a column-integrated parameter. One of the main factors affecting the disagreement between CS and AOD is the presence of elevated aerosol layers. Overall, the correlation between proxies calculated from the in situ data and observed nucleation mode particle number concentrations (Nnuc) remained low. At the time of the satellite overpass (13:00–14:00 LT) the highest correlation is observed for SO2/CS (R2 = 0.2). However, when the proxies are calculated using satellite data, only NO2/AOD showed some correlation with Nnuc (R2 = 0.2). This can be explained by the relatively high uncertainties related especially to the satellite SO2 columns and by the positive correlation that is observed between the ground-based SO2 and NO2 concentrations. In fact, results show that the satellite NO2 columns compare better with in situ SO2 concentration than the satellite SO2 column. Despite the high uncertainties related to the proxies calculated using satellite data, the proxies calculated from the in situ data did not better predict Nnuc. Hence, overall improvements in the formulation of the proxies are needed.
  • Item
    Meteorological and trace gas factors affecting the number concentration of atmospheric Aitken (DP Combining double low line 50 nm) particles in the continental boundary layer: Parameterization using a multivariate mixed effects model
    (München : European Geopyhsical Union, 2011) Mikkonen, S.; Korhonen, H.; Romakkaniemi, S.; Smith, J.N.; Joutsensaari, J.; Lehtinen, K.E.J.; Hamed, A.; Breider, T.J.; Birmili, W.; Spindler, G.; Plass-Duelmer, C.; Facchini, M.C.; Laaksonen, A.
    Measurements of aerosol size distribution and different gas and meteorological parameters, made in three polluted sites in Central and Southern Europe: Po Valley, Italy, Melpitz and Hohenpeissenberg in Germany, were analysed for this study to examine which of the meteorological and trace gas variables affect the number concentration of Aitken (Dp= 50 nm) particles. The aim of our study was to predict the number concentration of 50 nm particles by a combination of in-situ meteorological and gas phase parameters. The statistical model needs to describe, amongst others, the factors affecting the growth of newly formed aerosol particles (below 10 nm) to 50 nm size, but also sources of direct particle emissions in that size range. As the analysis method we used multivariate nonlinear mixed effects model. Hourly averages of gas and meteorological parameters measured at the stations were used as predictor variables; the best predictive model was attained with a combination of relative humidity, new particle formation event probability, temperature, condensation sink and concentrations of SO2, NO2 and ozone. The seasonal variation was also taken into account in the mixed model structure. Model simulations with the Global Model of Aerosol Processes (GLOMAP) indicate that the parameterization can be used as a part of a larger atmospheric model to predict the concentration of climatically active particles. As an additional benefit, the introduced model framework is, in theory, applicable for any kind of measured aerosol parameter.