Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

A threshold model for local volatility: Evidence of leverage and mean reversion effects on historical data

2017, Lejay, Antoine, Pigato, Paolo

In financial markets, low prices are generally associated with high volatilities and vice-versa, this well known stylized fact usually being referred to as leverage effect. We propose a local volatility model, given by a stochastic differential equation with piecewise constant coefficients, which accounts of leverage and mean-reversion effects in the dynamics of the prices. This model exhibits a regime switch in the dynamics accordingly to a certain threshold. It can be seen as a continuous time version of the Self-Exciting Threshold Autoregressive (SETAR) model. We propose an estimation procedure for the volatility and drift coefficients as well as for the threshold level. Tests are performed on the daily prices of 21 assets. They show empirical evidence for leverage and mean-reversion effects, consistent with the results in the literature.

Loading...
Thumbnail Image
Item

Maximum likelihood drift estimation for a threshold diffusion

2018, Lejay, Antoine, Pigato, Paolo

We study the maximum likelihood estimator of the drift parameters of a stochastic differential equation, with both drift and diffusion coefficients constant on the positive and negative axis, yet discontinuous at zero. This threshold diffusion is called the drifted Oscillating Brownian motion. The asymptotic behaviors of the positive and negative occupation times rule the ones of the estimators. Differently from most known results in the literature, we do not restrict ourselves to the ergodic framework: indeed, depending on the signs of the drift, the process may be ergodic, transient or null recurrent. For each regime, we establish whether or not the estimators are consistent; if they are, we prove the convergence in long time of the properly rescaled difference of the estimators towards a normal or mixed normal distribution. These theoretical results are backed by numerical simulations.