Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Mechanism of Skyrmion Attraction in Chiral Magnets near the Ordering Temperatures.

2023, Leonov, Andrey O., Rößler, Ulrich K.

Isolated chiral skyrmions are investigated within the phenomenological Dzyaloshinskii model near the ordering temperatures of quasi-two-dimensional chiral magnets with Cnv symmetry and three-dimensional cubic helimagnets. In the former case, isolated skyrmions (IS) perfectly blend into the homogeneously magnetized state. The interaction between these particle-like states, being repulsive in a broad low-temperature (LT) range, is found to switch into attraction at high temperatures (HT). This leads to a remarkable confinement effect: near the ordering temperature, skyrmions exist only as bound states. This is a consequence of the coupling between the magnitude and the angular part of the order parameter, which becomes pronounced at HT. The nascent conical state in bulk cubic helimagnets, on the contrary, is shown to shape skyrmion internal structure and to substantiate the attraction between them. Although the attracting skyrmion interaction in this case is explained by the reduction of the total pair energy due to the overlap of skyrmion shells, which are circular domain boundaries with the positive energy density formed with respect to the surrounding host phase, additional magnetization "ripples" at the skyrmion outskirt may lead to attraction also at larger length scales. The present work provides fundamental insights into the mechanism for complex mesophase formation near the ordering temperatures and constitutes a first step to explain the phenomenon of multifarious precursor effects in that temperature region.

Loading...
Thumbnail Image
Item

Reorientation processes of tilted skyrmion and spiral states in a bulk cubic helimagnet Cu2OSeO3

2023, Leonov, Andrey O., Pappas, Catherine

We present a systematic study of tilted spiral states obtained theoretically within the classical Dzyaloshinskii model for magnetic states in cubic non-centrosymmetric ferromagnets. Such tilted spirals are shown to stabilize under the competing effect of cubic and exchange anisotropies inherent to cubic helimagnets. By focusing on the internal structure of these spirals and their field-driven behaviour for different aspect ratios of the anisotropy coefficients, we are able to capture the main features of the experimental findings in a bulk cubic helimagnet Cu2OSeO3 and to make a step further towards a complete quantitative model of this chiral magnet. In particular, we show that for strong anisotropy values (which experimentally correspond to low temperatures near zero) there exist an angular separation between the conical and tilted spirals, i.e., the conical spiral flips into a tilted state and immediately composes some finite angle with respect to the field direction. As the anisotropy ratio decreases, such a transition between two spiral states becomes almost continuous and corresponds to higher temperatures at the experiments. In addition, we investigate the field-driven reorientation of metastable skyrmion lattices induced by the competing anisotropies, which may be responsible for some peculiarities at the experimental phase diagrams of Cu2OSeO3.

Loading...
Thumbnail Image
Item

Current-induced shuttlecock-like movement of non-axisymmetric chiral skyrmions

2020, Murooka, Remi, Leonov, Andrey O., Inoue, Katsuya, Ohe, Jun-ichiro

Current-induced motion of non-axisymmetric skyrmions within tilted ferromagnetic phases of polar helimagnets with the easy plane anisotropy is studied by micromagnetic simulations. Such non-axisymmetric skyrmions consist of a circular core and a crescent-shaped domain-wall region formed with respect to the tilted surrounding state. Current-driven motion of non-axisymmetric skyrmions exhibits two distinct time regimes: initially the skyrmions rotate towards the current flow direction and subsequently move along the current with the skyrmionic crescent first. According to the Thiele equation, the asymmetric distribution of the topological charge and the dissipative force tensor play an important role for giving the different velocities for the circular and the crescent-shaped constituent parts of the skyrmion what underlies such a shuttlecock-like movement. Moreover, the current-velocity relation depends on the angle of the tilted ferromagnetic phase what makes in particular the transverse velocity of skyrmions sensitive to their field-driven configurational transformation. We also argue the possibility of magnetic racetrack waveguides based on complex interplay of robust asymmetric skyrmions with multiple twisted edge states.