Search Results

Now showing 1 - 10 of 10
  • Item
    Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming
    (München : European Geopyhsical Union, 2017) Schewe, Jacob; Levermann, Anders
    Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300% over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic–thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.
  • Item
    Understanding the weather signal in national crop‐yield variability
    (Hoboken, NJ : Wiley, 2017) Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Smith, Steven J.; Pugh, Thomas A.M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders
    Year‐to‐year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather‐induced crop‐yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state‐of‐the‐art, process‐based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop‐yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process‐based crop models not only account for weather influences on crop yields, but also provide options to represent human‐management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.
  • Item
    Reply to Comment on 'High-income does not protect against hurricane losses'
    (Bristol : IOP Publishing, 2017) Geiger, Tobias; Frieler, Katja; Levermann, Anders
    Recently a multitude of empirically derived damage models have been applied to project future tropical cyclone (TC) losses for the United States. In their study (Geiger et al 2016 Environ. Res. Lett. 11 084012) compared two approaches that differ in the scaling of losses with socio-economic drivers: the commonly-used approach resulting in a sub-linear scaling of historical TC losses with a nation's affected gross domestic product (GDP), and the disentangled approach that shows a sub-linear increase with affected population and a super-linear scaling of relative losses with per capita income. Statistics cannot determine which approach is preferable but since process understanding demands that there is a dependence of the loss on both GDP per capita and population, an approach that accounts for both separately is preferable to one which assumes a specific relation between the two dependencies. In the accompanying comment, Rybski et al argued that there is no rigorous evidence to reach the conclusion that high-income does not protect against hurricane losses. Here we affirm that our conclusion is drawn correctly and reply to further remarks raised in the comment, highlighting the adequateness of our approach but also the potential for future extension of our research.
  • Item
    High-income does not protect against hurricane losses
    (Bristol : IOP Publishing, 2016) Geiger, Tobias; Frieler, Katja; Levermann, Anders
    Damage due to tropical cyclones accounts for more than 50% of all meteorologically-induced economic losses worldwide. Their nominal impact is projected to increase substantially as the exposed population grows, per capita income increases, and anthropogenic climate change manifests. So far, historical losses due to tropical cyclones have been found to increase less than linearly with a nation's affected gross domestic product (GDP). Here we show that for the United States this scaling is caused by a sub-linear increase with affected population while relative losses scale super-linearly with per capita income. The finding is robust across a multitude of empirically derived damage models that link the storm's wind speed, exposed population, and per capita GDP to reported losses. The separation of both socio-economic predictors strongly affects the projection of potential future hurricane losses. Separating the effects of growth in population and per-capita income, per hurricane losses with respect to national GDP are projected to triple by the end of the century under unmitigated climate change, while they are estimated to decrease slightly without the separation.
  • Item
    A statistically predictive model for future monsoon failure in India
    (Bristol : IOP Publishing, 2012) Schewe, Jacob; Levermann, Anders
    Indian monsoon rainfall is vital for a large share of the world's population. Both reliably projecting India's future precipitation and unraveling abrupt cessations of monsoon rainfall found in paleorecords require improved understanding of its stability properties. While details of monsoon circulations and the associated rainfall are complex, full-season failure is dominated by large-scale positive feedbacks within the region. Here we find that in a comprehensive climate model, monsoon failure is possible but very rare under pre-industrial conditions, while under future warming it becomes much more frequent. We identify the fundamental intraseasonal feedbacks that are responsible for monsoon failure in the climate model, relate these to observational data, and build a statistically predictive model for such failure. This model provides a simple dynamical explanation for future changes in the frequency distribution of seasonal mean all-Indian rainfall. Forced only by global mean temperature and the strength of the Pacific Walker circulation in spring, it reproduces the trend as well as the multidecadal variability in the mean and skewness of the distribution, as found in the climate model. The approach offers an alternative perspective on large-scale monsoon variability as the result of internal instabilities modulated by pre-seasonal ambient climate conditions.
  • Item
    Enhanced economic connectivity to foster heat stress-related losses
    (Washington, DC : American Association for the Advancement of Science, 2016) Wenz, Leonie; Levermann, Anders
    Assessing global impacts of unexpected meteorological events in an increasingly connected world economy is important for estimating the costs of climate change. We show that since the beginning of the 21st century, the structural evolution of the global supply network has been such as to foster an increase of climate-related production losses. We compute first- and higher-order losses from heat stress–induced reductions in productivity under changing economic and climatic conditions between 1991 and 2011. Since 2001, the economic connectivity has augmented in such a way as to facilitate the cascading of production loss. The influence of this structural change has dominated over the effect of the comparably weak climate warming during this decade. Thus, particularly under future warming, the intensification of international trade has the potential to amplify climate losses if no adaptation measures are taken.
  • Item
    Clustered marginalization of minorities during social transitions induced by co-evolution of behaviour and network structure
    (London : Nature Publishing Group, 2016) Carl-Friedrich, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders
    Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.
  • Item
    Similitude of ice dynamics against scaling of geometry and physical parameters
    (München : European Geopyhsical Union, 2016) Feldmann, Johannes; Levermann, Anders
    The concept of similitude is commonly employed in the fields of fluid dynamics and engineering but rarely used in cryospheric research. Here we apply this method to the problem of ice flow to examine the dynamic similitude of isothermal ice sheets in shallow-shelf approximation against the scaling of their geometry and physical parameters. Carrying out a dimensional analysis of the stress balance we obtain dimensionless numbers that characterize the flow. Requiring that these numbers remain the same under scaling we obtain conditions that relate the geometric scaling factors, the parameters for the ice softness, surface mass balance and basal friction as well as the ice-sheet intrinsic response time to each other. We demonstrate that these scaling laws are the same for both the (two-dimensional) flow-line case and the three-dimensional case. The theoretically predicted ice-sheet scaling behavior agrees with results from numerical simulations that we conduct in flow-line and three-dimensional conceptual setups. We further investigate analytically the implications of geometric scaling of ice sheets for their response time. With this study we provide a framework which, under several assumptions, allows for a fundamental comparison of the ice-dynamic behavior across different scales. It proves to be useful in the design of conceptual numerical model setups and could also be helpful for designing laboratory glacier experiments. The concept might also be applied to real-world systems, e.g., to examine the response times of glaciers, ice streams or ice sheets to climatic perturbations.
  • Item
    From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the parallel ice sheet model
    (München : European Geopyhsical Union, 2017) Feldmann, Johannes; Levermann, Anders
    Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear) on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.
  • Item
    Verbundvorhaben: Zukünftiger Meeresspiegelanstieg der Antarktis: Erwartung und Risiko : Schlussbericht : Laufzeit des Vorhabens: November 2011 - September 2013
    (Hannover : Technische Informationsbibliothek, 2013) Levermann, Anders; Timmermann, Ralph
    [no abstract available]