Search Results

Now showing 1 - 10 of 20
Loading...
Thumbnail Image
Item

Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models

2021, Katzenberger, Anja, Schewe, Jacob, Pongratz, Julia, Levermann, Anders

The Indian summer monsoon is an integral part of the global climate system. As its seasonal rainfall plays a crucial role in India's agriculture and shapes many other aspects of life, it affects the livelihood of a fifth of the world's population. It is therefore highly relevant to assess its change under potential future climate change. Global climate models within the Coupled Model Intercomparison Project Phase 5 (CMIP5) indicated a consistent increase in monsoon rainfall and its variability under global warming. Since the range of the results of CMIP5 was still large and the confidence in the models was limited due to partly poor representation of observed rainfall, the updates within the latest generation of climate models in CMIP6 are of interest. Here, we analyze 32 models of the latest CMIP6 exercise with regard to their annual mean monsoon rainfall and its variability. All of these models show a substantial increase in June-to-September (JJAS) mean rainfall under unabated climate change (SSP5-8.5) and most do also for the other three Shared Socioeconomic Pathways analyzed (SSP1-2.6, SSP2-4.5, SSP3-7.0). Moreover, the simulation ensemble indicates a linear dependence of rainfall on global mean temperature with a high agreement between the models independent of the SSP if global warming is the dominant forcing of the monsoon dynamics as it is in the 21st century; the multi-model mean for JJAS projects an increase of 0.33 mm d−1 and 5.3 % per kelvin of global warming. This is significantly higher than in the CMIP5 projections. Most models project that the increase will contribute to the precipitation especially in the Himalaya region and to the northeast of the Bay of Bengal, as well as the west coast of India. Interannual variability is found to be increasing in the higher-warming scenarios by almost all models. The CMIP6 simulations largely confirm the findings from CMIP5 models, but show an increased robustness across models with reduced uncertainties and updated magnitudes towards a stronger increase in monsoon rainfall.

Loading...
Thumbnail Image
Item

Future heat stress to reduce people’s purchasing power

2021, Kuhla, Kilian, Willner, Sven Norman, Otto, Christian, Wenz, Leonie, Levermann, Anders

With increasing carbon emissions rising temperatures are likely to impact our economies and societies profoundly. In particular, it has been shown that heat stress can strongly reduce labor productivity. The resulting economic perturbations can propagate along the global supply network. Here we show, using numerical simulations, that output losses due to heat stress alone are expected to increase by about 24% within the next 20 years, if no additional adaptation measures are taken. The subsequent market response with rising prices and supply shortages strongly reduces the consumers’ purchasing power in almost all countries including the US and Europe with particularly strong effects in India, Brazil, and Indonesia. As a consequence, the producing sectors in many regions temporarily benefit from higher selling prices while decreasing their production in quantity, whereas other countries suffer losses within their entire national economy. Our results stress that, even though climate shocks may stimulate economic activity in some regions and some sectors, their unpredictability exerts increasing pressure on people’s livelihood.

Loading...
Thumbnail Image
Item

Economic losses from hurricanes cannot be nationally offset under unabated warming

2022, Middelanis, Robin, Willner, Sven N, Otto, Christian, Levermann, Anders

Tropical cyclones range among the costliest of all meteorological events worldwide and planetary scale warming provides more energy and moisture to these storms. Modelling the national and global economic repercussions of 2017’s Hurricane Harvey, we find a qualitative change in the global economic response in an increasingly warmer world. While the United States were able to balance regional production failures by the original 2017 hurricane, this option becomes less viable under future warming. In our simulations of over 7000 regional economic sectors with more than 1.8 million supply chain connections, the US are not able to offset the losses by use of national efforts with intensifying hurricanes under unabated warming. At a certain warming level other countries have to step in to supply the necessary goods for production, which gives US economic sectors a competitive disadvantage. In the highly localized mining and quarrying sector—which here also comprises the oil and gas production industry—this disadvantage emerges already with the original Hurricane Harvey and intensifies under warming. Eventually, also other regions reach their limit of what they can offset. While we chose the example of a specific hurricane impacting a specific region, the mechanism is likely applicable to other climate-related events in other regions and other sectors. It is thus likely that the regional economic sectors that are best adapted to climate change gain significant advantage over their competitors under future warming.

Loading...
Thumbnail Image
Item

Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet

2015, Winkelmann, Ricarda, Levermann, Anders, Ridgwell, Andy, Caldeira, Ken

The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

Loading...
Thumbnail Image
Item

A simple parametrization of mélange buttressing for calving glaciers

2021, Schlemm, Tanja, Levermann, Anders

Both ice sheets in Greenland and Antarctica are discharging ice into the ocean. In many regions along the coast of the ice sheets, the icebergs calve into a bay. If the addition of icebergs through calving is faster than their transport out of the embayment, the icebergs will be frozen into a mélange with surrounding sea ice in winter. In this case, the buttressing effect of the ice mélange can be considerably stronger than any buttressing by mere sea ice would be. This in turn stabilizes the glacier terminus and leads to a reduction in calving rates. Here we propose a simple parametrization of ice mélange buttressing which leads to an upper bound on calving rates and can be used in numerical and analytical modelling.

Loading...
Thumbnail Image
Item

Paris Climate Agreement passes the cost-benefit test

2020, Glanemann, Nicole, Willner, Sven N., Levermann, Anders

The Paris Climate Agreement aims to keep temperature rise well below 2 °C. This implies mitigation costs as well as avoided climate damages. Here we show that independent of the normative assumptions of inequality aversion and time preferences, the agreement constitutes the economically optimal policy pathway for the century. To this end we consistently incorporate a damage-cost curve reproducing the observed relation between temperature and economic growth into the integrated assessment model DICE. We thus provide an inter-temporally optimizing cost-benefit analysis of this century’s climate problem. We account for uncertainties regarding the damage curve, climate sensitivity, socioeconomic future, and mitigation costs. The resulting optimal temperature is robust as can be understood from the generic temperature-dependence of the mitigation costs and the level of damages inferred from the observed temperature-growth relationship. Our results show that the politically motivated Paris Climate Agreement also represents the economically favourable pathway, if carried out properly.

Loading...
Thumbnail Image
Item

More people too poor to move: divergent effects of climate change on global migration patterns

2023, Rikani, Albano, Otto, Christian, Levermann, Anders, Schewe, Jacob

The observed temperature increase due to anthropogenic carbon emissions has impacted economies worldwide. National income levels in origin and destination countries influence international migration. Emigration is relatively low not only from high income countries but also from very poor regions, which is explained in current migration theory by credit constraints and lower average education levels, among other reasons. These relationships suggest a potential non-linear, indirect effect of climate change on migration through this indirect channel. Here we explore this effect through a counterfactual analysis using observational data and a simple model of migration. We show that a world without climate change would have seen less migration during the past 30 years, but that this effect is strongly reduced due to inhibited mobility. Our framework suggests that migration within the Global South has been strongly reduced because these countries have seen less economic growth than they would have experienced without climate change. Importantly, climate change has impacted international migration in the richer and poorer parts of the world very differently. In the future, climate change may keep increasing global migration as it slows down countries’ transition across the middle-income range associated with the highest emigration rates.

Loading...
Thumbnail Image
Item

Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry

2021, Zeitz, Maria, Levermann, Anders, Winkelmann, Ricarda

Acceleration of the flow of ice drives mass losses in both the Antarctic and the Greenland Ice Sheet. The projections of possible future sea-level rise rely on numerical ice-sheet models, which solve the physics of ice flow, melt, and calving. While major advancements have been made by the ice-sheet modeling community in addressing several of the related uncertainties, the flow law, which is at the center of most process-based ice-sheet models, is not in the focus of the current scientific debate. However, recent studies show that the flow law parameters are highly uncertain and might be different from the widely accepted standard values. Here, we use an idealized flow-line setup to investigate how these uncertainties in the flow law translate into uncertainties in flow-driven mass loss. In order to disentangle the effect of future warming on the ice flow from other effects, we perform a suite of experiments with the Parallel Ice Sheet Model (PISM), deliberately excluding changes in the surface mass balance. We find that changes in the flow parameters within the observed range can lead up to a doubling of the flow-driven mass loss within the first centuries of warming, compared to standard parameters. The spread of ice loss due to the uncertainty in flow parameters is on the same order of magnitude as the increase in mass loss due to surface warming. While this study focuses on an idealized flow-line geometry, it is likely that this uncertainty carries over to realistic three-dimensional simulations of Greenland and Antarctica.

Loading...
Thumbnail Image
Item

Investment incentive reduced by climate damages can be restored by optimal policy

2021, Willner, Sven N., Glanemann, Nicole, Levermann, Anders

Increasing greenhouse gas emissions are likely to impact not only natural systems but economies worldwide. If these impacts alter future economic development, the financial losses will be significantly higher than the mere direct damages. So far, potentially aggravating investment responses were considered negligible. Here we consistently incorporate an empirically derived temperature-growth relation into the simple integrated assessment model DICE. In this framework we show that, if in the next eight decades varying temperatures impact economic growth as has been observed in the past three decades, income is reduced by ~ 20% compared to an economy unaffected by climate change. Hereof ~ 40% are losses due to growth effects of which ~ 50% result from reduced incentive to invest. This additional income loss arises from a reduced incentive for future investment in anticipation of a reduced return and not from an explicit climate protection policy. Under economically optimal climate-change mitigation, however, optimal investment would only be reduced marginally as mitigation efforts keep returns high.

Loading...
Thumbnail Image
Item

Sahel Rainfall Projections Constrained by Past Sensitivity to Global Warming

2022, Schewe, Jacob, Levermann, Anders

Africa's central Sahel region has experienced prolonged drought conditions in the past, while rainfall has recovered more recently. Global climate models project anything from no change to a strong wetting trend under unabated climate change; and they have difficulty reproducing the complex historical record. Here we show that when a period of dominant aerosol forcing is excluded, a consistent wetting response to greenhouse-gas induced warming emerges in observed rainfall. Using the observed response coefficient estimate as a constraint, we find that Coupled Model Intercomparison Project Phase 6 climate models with a realistic past rainfall response show a smaller spread, and higher median, of projected future rainfall change, compared to the full ensemble. In particular, very small or negative rainfall trends are absent from the constrained ensemble. Our results provide further evidence for a robust Sahel rainfall increase in response to greenhouse-gas forcing, consistent with recent observations, and including the possibility of a very strong increase.