Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Interfacial Covalent Bonds Regulated Electron-Deficient 2D Black Phosphorus for Electrocatalytic Oxygen Reactions

2021, Wang, Xia, Raghupathy, Ramya Kormath Madam, Querebillo, Christine Joy, Liao, Zhongquan, Li, Dongqi, Lin, Kui, Hantusch, Martin, Sofer, Zdeněk, Li, Baohua, Zschech, Ehrenfried, Weidinger, Inez M., Kühne, Thomas D., Mirhosseini, Hossein, Yu, Minghao, Feng, Xinliang

Developing resource-abundant and sustainable metal-free bifunctional oxygen electrocatalysts is essential for the practical application of zinc–air batteries (ZABs). 2D black phosphorus (BP) with fully exposed atoms and active lone pair electrons can be promising for oxygen electrocatalysts, which, however, suffers from low catalytic activity and poor electrochemical stability. Herein, guided by density functional theory (DFT) calculations, an efficient metal-free electrocatalyst is demonstrated via covalently bonding BP nanosheets with graphitic carbon nitride (denoted BP-CN-c). The polarized P-N covalent bonds in BP-CN-c can efficiently regulate the electron transfer from BP to graphitic carbon nitride and significantly promote the OOH* adsorption on phosphorus atoms. Impressively, the oxygen evolution reaction performance of BP-CN-c (overpotential of 350 mV at 10 mA cm−2, 90% retention after 10 h operation) represents the state-of-the-art among the reported BP-based metal-free catalysts. Additionally, BP-CN-c exhibits a small half-wave overpotential of 390 mV for oxygen reduction reaction, representing the first bifunctional BP-based metal-free oxygen catalyst. Moreover, ZABs are assembled incorporating BP-CN-c cathodes, delivering a substantially higher peak power density (168.3 mW cm−2) than the Pt/C+RuO2-based ZABs (101.3 mW cm−2). The acquired insights into interfacial covalent bonds pave the way for the rational design of new and affordable metal-free catalysts. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries

2023, Sabaghi, Davood, Wang, Zhiyong, Bhauriyal, Preeti, Lu, Qiongqiong, Morag, Ahiud, Mikhailovia, Daria, Hashemi, Payam, Li, Dongqi, Neumann, Christof, Liao, Zhongquan, Dominic, Anna Maria, Nia, Ali Shaygan, Dong, Renhao, Zschech, Ehrenfried, Turchanin, Andrey, Heine, Thomas, Yu, Minghao, Feng, Xinliang

The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF6−-intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.

Loading...
Thumbnail Image
Item

Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries

2023, Sabaghi, Davood, Wang, Zhiyong, Bhauriyal, Preeti, Lu, Qiongqiong, Morag, Ahiud, Mikhailovia, Daria, Hashemi, Payam, Li, Dongqi, Neumann, Christof, Liao, Zhongquan, Dominic, Anna Maria, Nia, Ali Shaygan, Dong, Renhao, Zschech, Ehrenfried, Turchanin, Andrey, Heine, Thomas, Yu, Minghao, Feng, Xinliang

The anion-intercalation chemistries of graphite have the potential to construct batteries with promising energy and power breakthroughs. Here, we report the use of an ultrathin, positively charged two-dimensional poly(pyridinium salt) membrane (C2DP) as the graphite electrode skin to overcome the critical durability problem. Large-area C2DP enables the conformal coating on the graphite electrode, remarkably alleviating the electrolyte. Meanwhile, the dense face-on oriented single crystals with ultrathin thickness and cationic backbones allow C2DP with high anion-transport capability and selectivity. Such desirable anion-transport properties of C2DP prevent the cation/solvent co-intercalation into the graphite electrode and suppress the consequent structure collapse. An impressive PF6−-intercalation durability is demonstrated for the C2DP-covered graphite electrode, with capacity retention of 92.8% after 1000 cycles at 1 C and Coulombic efficiencies of > 99%. The feasibility of constructing artificial ion-regulating electrode skins with precisely customized two-dimensional polymers offers viable means to promote problematic battery chemistries.