Search Results

Now showing 1 - 2 of 2
  • Item
    Controlled synthesis of mussel-inspired Ag nanoparticle coatings with demonstrated in vitro and in vivo antibacterial properties
    (Amsterdam [u.a.] : Elsevier Science, 2021) Wang, Xiaowei; Xu, Kehui; Cui, Wendi; Yang, Xi; Maitz, Manfred F.; Li, Wei; Li, Xiangyang; Chen, Jialong
    The in-situ formation of silver nanoparticles (AgNPs) via dopamine-reduction of Ag+ has been widely utilized for titanium implants to introduce antibacterial properties. In previous studies, the preparation of AgNPs has focused on controlling the feeding concentrations, while the pH of the reaction solution was ignored. Herein, we systematically determined the influence of various pH (4, 7, 10) and Ag+ concentrations (0.01, 0.1 mg/mL) on the AgNPs formation, followed by the evaluation of the antibacterial properties in vitro and in vivo. The results revealed that an alkaline environment was favourable for AgNP formation and resulted in more particles. Although the AgNPs bearing Ti had lower biocompatibilities, it was significantly improved after 7 days of mineralization in simulated body fluid. The outstanding antibacterial property of the AgNPs was well maintained after one day and seven days of implantation. Moreover, 3D micro-CT modelling showed that the pH 10/0.1 group exhibited remarkable osteogenesis, which may be due to their strong antibacterial properties and ability to promote mineralization. Therefore, we have demonstrated that the solution pH was as important as the feeding Ag+ concentration in determining AgNP formation, and it has paved the way for developing various AgNP-loaded surfaces that could meet different antibacterial needs.
  • Item
    Endothelium-Mimicking Multifunctional Coating Modified Cardiovascular Stents via a Stepwise Metal-Catechol-(Amine) Surface Engineering Strategy
    (Washington, DC [u.a.] : American Association for the Advancement of Science, 2020) Yang, Ying; Gao, Peng; Wang, Juan; Tu, Qiufen; Bai, Long; Xiong, Kaiqin; Qiu, Hua; Zhao, Xin; Maitz, Manfred F.; Wang, Huaiyu; Li, Xiangyang; Zhao, Qiang; Xiao, Yin; Huang, Nan; Yang, Zhilu
    Stenting is currently the major therapeutic treatment for cardiovascular diseases. However, the nonbiogenic metal stents are inclined to trigger a cascade of cellular and molecular events including inflammatory response, thrombogenic reactions, smooth muscle cell hyperproliferation accompanied by the delayed arterial healing, and poor reendothelialization, thus leading to restenosis along with late stent thrombosis. To address prevalence critical problems, we present an endothelium-mimicking coating capable of rapid regeneration of a competently functioning new endothelial layer on stents through a stepwise metal (copper)-catechol-(amine) (MCA) surface chemistry strategy, leading to combinatorial endothelium-like functions with glutathione peroxidase-like catalytic activity and surface heparinization. Apart from the stable nitric oxide (NO) generating rate at the physiological level (2:2 × 10a'10 mol/cm2/min lasting for 60 days), this proposed strategy could also generate abundant amine groups for allowing a high heparin conjugation efficacy up to ∼1 μg/cm2, which is considerably higher than most of the conventional heparinized surfaces. The resultant coating could create an ideal microenvironment for bringing in enhanced antithrombogenicity, anti-inflammation, anti-proliferation of smooth muscle cells, re-endothelialization by regulating relevant gene expressions, hence preventing restenosis in vivo. We envision that the stepwise MCA coating strategy would facilitate the surface endothelium-mimicking engineering of vascular stents and be therefore helpful in the clinic to reduce complications associated with stenosis. © 2020 American Association for the Advancement of Science. All rights reserved.