Search Results

Now showing 1 - 2 of 2
  • Item
    No Evidence for a Significant Impact of Heterogeneous Chemistry on Radical Concentrations in the North China Plain in Summer 2014
    (Columbus, Ohio : American Chemical Society, 2020) Tan, Zhaofeng; Hofzumahaus, Andreas; Lu, Keding; Brown, Steven S.; Holland, Frank; Huey, Lewis Gregory; Kiendler-Scharr, Astrid; Li, Xin; Liu, Xiaoxi; Ma, Nan; Min, Kyung-Eun; Rohrer, Franz; Shao, Min; Wahner, Andreas; Wang, Yuhang; Wiedensohler, Alfred; Wu, Yusheng; Wu, Zhijun; Zeng, Limin; Zhang, Yuanhang; Fuchs, Hendrik
    The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO2) and organic peroxy radicals (RO2) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area. Radical and trace gas concentrations were measured, allowing for calculating the turnover rates of gas-phase radical reactions. Therefore, the importance of heterogeneous HO2 uptake on aerosol could be experimentally determined. HO2 uptake could have suppressed ozone formation at that time because of the competition with gas-phase reactions that produce ozone. The successful reduction of the aerosol load in the North China Plain in the last years could have led to a significant decrease of HO2 loss on particles, so that ozone-forming reactions could have gained importance in the last years. However, the analysis of the measured radical budget in this campaign shows that HO2 aerosol uptake did not impact radical chemistry for chemical conditions in 2014. Therefore, reduced HO2 uptake on aerosol since then is likely not the reason for the increasing number of ozone pollution events in the North China Plain, contradicting conclusions made from model calculations reported in the literature. © 2020 American Chemical Society.
  • Item
    Significant concentrations of nitryl chloride sustained in the morning: Investigations of the causes and impacts on ozone production in a polluted region of northern China
    (München : European Geopyhsical Union, 2016) Tham, Yee Jun; Wang, Zhe; Li, Qinyi; Yun, Hui; Wang, Weihao; Wang, Xinfeng; Xue, Likun; Lu, Keding; Ma, Nan; Bohn, Birger; Li, Xin; Kecorius, Simonas; Größ, Johannes; Shao, Min; Wiedensohler, Alfred; Zhang, Yuanhang; Wang, Tao
    Nitryl chloride (ClNO2) is a dominant source of chlorine radical in polluted environment, and can significantly affect the atmospheric oxidative chemistry. However, the abundance of ClNO2 and its exact role are not fully understood under different environmental conditions. During the summer of 2014, we deployed a chemical ionization mass spectrometer to measure ClNO2 and dinitrogen pentoxide (N2O5) at a rural site in the polluted North China Plain. Elevated mixing ratios of ClNO2 (> 350 pptv) were observed at most of the nights with low levels of N2O5 (< 200 pptv). The highest ClNO2 mixing ratio of 2070 pptv (1 min average) was observed in a plume from a megacity (Tianjin), and was characterized with a faster N2O5 heterogeneous loss rate and ClNO2 production rate compared to average conditions. The abundant ClNO2 concentration kept increasing even after sunrise, and reached a peak 4 h later. Such highly sustained ClNO2 peaks after sunrise are discrepant from the previously observed typical diurnal pattern. Meteorological and chemical analysis shows that the sustained ClNO2 morning peaks are caused by significant ClNO2 production in the residual layer at night followed by downward mixing after breakup of the nocturnal inversion layer in the morning. We estimated that  ∼  1.7–4.0 ppbv of ClNO2 would exist in the residual layer in order to maintain the observed morning ClNO2 peaks at the surface site. Observation-based box model analysis show that photolysis of ClNO2 produced chlorine radical with a rate up to 1.12 ppbv h−1, accounting for 10–30 % of primary ROx production in the morning hours. The perturbation in total radical production leads to an increase of integrated daytime net ozone production by 3 % (4.3 ppbv) on average, and with a larger increase of 13 % (11 ppbv) in megacity outflow that was characterized with higher ClNO2 and a relatively lower oxygenated hydrocarbon (OVOC) to non-methane hydrocarbon (NMHC) ratio.