Search Results

Now showing 1 - 6 of 6
  • Item
    Stamping Fabrication of Flexible Planar Micro‐Supercapacitors Using Porous Graphene Inks
    (Hoboken : Wiley, 2020) Li, Fei; Qu, Jiang; Li, Yang; Wang, Jinhui; Zhu, Minshen; Liu, Lixiang; Ge, Jin; Duan, Shengkai; Li, Tianming; Bandari, Vineeth Kumar; Huang, Ming; Zhu, Feng; Schmidt, Oliver G.
    High performance, flexibility, safety, and robust integration for micro‐supercapacitors (MSCs) are of immense interest for the urgent demand for miniaturized, smart energy‐storage devices. However, repetitive photolithography processes in the fabrication of on‐chip electronic components including various photoresists, masks, and toxic etchants are often not well‐suited for industrial production. Here, a cost‐effective stamping strategy is developed for scalable and rapid preparation of graphene‐based planar MSCs. Combining stamps with desired shapes and highly conductive graphene inks, flexible MSCs with controlled structures are prepared on arbitrary substrates without any metal current collectors, additives, and polymer binders. The interdigitated MSC exhibits high areal capacitance up to 21.7 mF cm−2 at a current of 0.5 mA and a high power density of 6 mW cm−2 at an energy density of 5 µWh cm−2. Moreover, the MSCs show outstanding cycling performance and remarkable flexibility over 10 000 charge–discharge cycles and 300 bending cycles. In addition, the capacitance and output voltage of the MSCs are easily adjustable through interconnection with well‐defined arrangements. The efficient, rapid manufacturing of the graphene‐based interdigital MSCs with outstanding flexibility, shape diversity, and high areal capacitance shows great potential in wearable and portable electronics.
  • Item
    Stress‐Actuated Spiral Microelectrode for High‐Performance Lithium‐Ion Microbatteries
    (2020) Tang, Hongmei; Karnaushenko, Dmitriy D.; Neu, Volker; Gabler, Felix; Wang, Sitao; Liu, Lixiang; Li, Yang; Wang, Jiawei; Zhu, Minshen; Schmidt, Oliver G.
    Miniaturization of batteries lags behind the success of modern electronic devices. Neither the device volume nor the energy density of microbatteries meets the requirement of microscale electronic devices. The main limitation for pushing the energy density of microbatteries arises from the low mass loading of active materials. However, merely pushing the mass loading through increased electrode thickness is accompanied by the long charge transfer pathway and inferior mechanical properties for long‐term operation. Here, a new spiral microelectrode upon stress‐actuation accomplishes high mass loading but short charge transfer pathways. At a small footprint area of around 1 mm2, a 21‐fold increase of the mass loading is achieved while featuring fast charge transfer at the nanoscale. The spiral microelectrode delivers a maximum area capacity of 1053 µAh cm−2 with a retention of 67% over 50 cycles. Moreover, the energy density of the cylinder microbattery using the spiral microelectrode as the anode reaches 12.6 mWh cm−3 at an ultrasmall volume of 3 mm3. In terms of the device volume and energy density, the cylinder microbattery outperforms most of the current microbattery technologies, and hence provides a new strategy to develop high‐performance microbatteries that can be integrated with miniaturized electronic devices.
  • Item
    A Patternable and In Situ Formed Polymeric Zinc Blanket for a Reversible Zinc Anode in a Skin-Mountable Microbattery
    (Weinheim : Wiley-VCH, 2021) Zhu, Minshen; Hu, Junping; Lu, Qiongqiong; Dong, Haiyun; Karnaushenko, Dmitriy D.; Becker, Christian; Karnaushenko, Daniil; Li, Yang; Tang, Hongmei; Qu, Zhe; Ge, Jin; Schmidt, Oliver G.
    Owing to their high safety and reversibility, aqueous microbatteries using zinc anodes and an acid electrolyte have emerged as promising candidates for wearable electronics. However, a critical limitation that prevents implementing zinc chemistry at the microscale lies in its spontaneous corrosion in an acidic electrolyte that causes a capacity loss of 40% after a ten-hour rest. Widespread anti-corrosion techniques, such as polymer coating, often retard the kinetics of zinc plating/stripping and lack spatial control at the microscale. Here, a polyimide coating that resolves this dilemma is reported. The coating prevents corrosion and hence reduces the capacity loss of a standby microbattery to 10%. The coordination of carbonyl oxygen in the polyimide with zinc ions builds up over cycling, creating a zinc blanket that minimizes the concentration gradient through the electrode/electrolyte interface and thus allows for fast kinetics and low plating/stripping overpotential. The polyimide's patternable feature energizes microbatteries in both aqueous and hydrogel electrolytes, delivering a supercapacitor-level rate performance and 400 stable cycles in the hydrogel electrolyte. Moreover, the microbattery is able to be attached to human skin and offers strong resistance to deformations, splashing, and external shock. The skin-mountable microbattery demonstrates an excellent combination of anti-corrosion, reversibility, and durability in wearables. © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations
    (Weinheim : Wiley-VCH, 2020) Zhu, Minshen; Wang, Xiaojie; Tang, Hongmei; Wang, Jiawei; Hao, Qi; Liu, Lixiang; Li, Yang; Zhang, Kai; Schmidt, Oliver G.
    Hydrogels are widely used in flexible aqueous batteries due to their liquid-like ion transportation abilities and solid-like mechanical properties. Their potential applications in flexible and wearable electronics introduce a fundamental challenge: how to lower the freezing point of hydrogels to preserve these merits without sacrificing hydrogels' basic advantages in low cost and high safety. Moreover, zinc as an ideal anode in aqueous batteries suffers from low reversibility because of the formation of insulative byproducts, which is mainly caused by hydrogen evolution via extensive hydration of zinc ions. This, in principle, requires the suppression of hydration, which induces an undesirable increase in the freezing point of hydrogels. Here, it is demonstrated that cooperatively hydrated cations, zinc and lithium ions in hydrogels, are very effective in addressing the above challenges. This simple but unique hydrogel not only enables a 98% capacity retention upon cooling down to −20 °C from room temperature but also allows a near 100% capacity retention with >99.5% Coulombic efficiency over 500 cycles at −20 °C. In addition, the strengthened mechanical properties of the hydrogel under subzero temperatures result in excellent durability under various harsh deformations after the freezing process. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    A compact tube-in-tube microsized lithium-ion battery as an independent microelectric power supply unit
    ([New York, NY] : Elsevier, 2021) Weng, Qunhong; Wang, Sitao; Liu, Lixiang; Lu, Xueyi; Zhu, Minshen; Li, Yang; Gabler, Felix; Schmidt, Oliver G.
    Independent and well-packaged miniaturized energy storage devices (MESDs) are indispensable as power sources or backup units for integrated circuits and many dispersive electronics applications. Challenges associated with MESD development relate to their low packaged areal energy density and poor battery performance. Here, we propose a compact tube-in-tube battery configuration to overcome the areal energy density and packaging problems in microbatteries. Compact microtubular microelectrodes rolled up from patterned nanomembranes are sealed in an inert glass capillary with a thin tube wall. The resultant tube-in-tube microsized lithium-ion batteries (micro-LIBs), based on various active materials, exhibit very high and scalable packaged areal energy densities up to 605 microampere hours per square centimeter (μAh cm−2) or 313 μWh cm−2 with footprints as small as 0.39–0.79 mm2. This approach is a practical alternative for microbattery microelectrode, packaging, and configuration innovations.
  • Item
    Advanced architecture designs towards high-performance 3D microbatteries
    (Amsterdam : Elsevier, 2021) Li, Yang; Qu, Jiang; Li, Fei; Qu, Zhe; Tang, Hongmei; Liu, Lixiang; Zhu, Minshen; Schmidt, Oliver G.
    Rechargeable microbatteries are important power supplies for microelectronic devices. Two essential targets for rechargeable microbatteries are high output energy and minimal footprint areas. In addition to the development of new high-performance electrode materials, the device configurations of microbatteries also play an important role in enhancing the output energy and miniaturizing the footprint area. To make a clear vision on the design principle of rechargeable microbatteries, we firstly summarize the typical configurations of microbatteries. The advantages of different configurations are thoroughly discussed from the aspects of fabrication technologies and material engineering. Towards the high energy output at a minimal footprint area, a revolutionary design for microbatteries is of great importance. In this perspective, we review the progress of fabricating microbatteries based on the rolled-up nanotechnology, a derivative origami technology. Finally, we discussed the challenges and perspectives in the device design and materials optimization.