Search Results

Now showing 1 - 3 of 3
  • Item
    Optimal Entropy-Transport problems and a new Hellinger–Kantorovich distance between positive measures
    (Berlin ; Heidelberg : Springer, 2017) Liero, Matthias; Mielke, Alexander; Savaré, Giuseppe
    We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. These problems arise quite naturally by relaxing the marginal constraints typical of Optimal Transport problems: given a pair of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, which quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger–Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger–Kakutani and Kantorovich–Wasserstein distances.
  • Item
    Optimal transport in competition with reaction: The Hellinger-Kantorovich distance and geodesic curves
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Liero, Matthias; Mielke, Alexander; Savaré, Giuseppe
    We discuss a new notion of distance on the space of finite and nonnegative measures on Omega C Rd, which we call Hellinger-Kantorovich distance. It can be seen as an infconvolution of the well-known Kantorovich-Wasserstein distance and the Hellinger-Kakutani distance. The new distance is based on a dynamical formulation given by an Onsager operator that is the sum of a Wasserstein diffusion part and an additional reaction part describing the generation and absorption of mass. We present a full characterization of the distance and some of its properties. In particular, the distance can be equivalently described by an optimal transport problem on the cone space over the underlying space Omega. We give a construction of geodesic curves and discuss examples and their general properties.
  • Item
    Optimal Entropy-Transport problems and a new Hellinger-Kantorovich distance between positive measures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Liero, Matthias; Mielke, Alexander; Savaré, Giuseppe
    We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. They arise quite naturally by relaxing the marginal constraints typical of Optimal Transport problems: given a couple of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, that quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger-Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger-Kakutani and Kantorovich-Wasserstein distances.