Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Optimal Entropy-Transport problems and a new Hellinger-Kantorovich distance between positive measures

2016, Liero, Matthias, Mielke, Alexander, Savaré, Giuseppe

We develop a full theory for the new class of Optimal Entropy-Transport problems between nonnegative and finite Radon measures in general topological spaces. They arise quite naturally by relaxing the marginal constraints typical of Optimal Transport problems: given a couple of finite measures (with possibly different total mass), one looks for minimizers of the sum of a linear transport functional and two convex entropy functionals, that quantify in some way the deviation of the marginals of the transport plan from the assigned measures. As a powerful application of this theory, we study the particular case of Logarithmic Entropy-Transport problems and introduce the new Hellinger-Kantorovich distance between measures in metric spaces. The striking connection between these two seemingly far topics allows for a deep analysis of the geometric properties of the new geodesic distance, which lies somehow between the well-known Hellinger-Kakutani and Kantorovich-Wasserstein distances.

Loading...
Thumbnail Image
Item

Gradient structures and geodesic convexity for reaction-diffusion systems

2012, Liero, Matthias, Mielke, Alexander

We consider systems of reaction-diffusion equations as gradient systems with respect to an entropy functional and a dissipation metric given in terms of a so-called Onsager operator, which is a sum of a diffusion part of Wasserstein type and a reaction part. We provide methods for establishing geodesic lambda-convexity of the entropy functional by purely differential methods, thus circumventing arguments from mass transportation. Finally, several examples, including a drift-diffusion system, provide a survey on the applicability of the theory. We consider systems of reaction-diffusion equations as gradient systems with respect to an entropy functional and a dissipation metric given in terms of a so-called Onsager operator, which is a sum of a diffusion part of Wasserstein type and a reaction part. We provide methods for establishing geodesic lambda-convexity of the entropy functional by purely differential methods, thus circumventing arguments from mass transportation. Finally, several examples, including a drift-diffusion system, provide a survey on the applicability of the theory.

Loading...
Thumbnail Image
Item

On microscopic origins of generalized gradient structures

2015, Liero, Matthias, Mielke, Alexander, Peletier, Mark A., Renger, D.R. Michiel

Classical gradient systems have a linear relation between rates and driving forces. In generalized gradient systems we allow for arbitrary relations derived from general non-quadratic dissipation potentials. This paper describes two natural origins for these structures. A first microscopic origin of generalized gradient structures is given by the theory of large-deviation principles. While Markovian diffusion processes lead to classical gradient structures, poissonian jump processes give rise to cosh-type dissipation potentials. A second origin arises via a new form of convergence, that we call EDP-convergence. Even when starting with classical gradient systems, where the dissipation potential is a quadratic functional of the rate, we may obtain a generalized gradient system in the evolutionary Gamma-limit. As examples we treat (i) the limit of a diffusion equation having a thin layer of low diffusivity, which leads to a membrane model, and (ii) the limit of diffusion over a high barrier, which gives a reaction-diffusion system.