Search Results

Now showing 1 - 3 of 3
  • Item
    A coarse-grained electrothermal model for organic semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Glitzky, Annegret; Liero, Matthias; Nika, Grigor
    We derive a coarse-grained model for the electrothermal interaction of organic semiconductors. The model combines stationary drift-diffusion based electrothermal models with thermistor type models on subregions of the device and suitable transmission conditions. Moreover, we prove existence of a solution using a regularization argument and Schauder's fixed point theorem. In doing so, we extend recent work by taking into account the statistical relation given by the Gauss--Fermi integral and mobility functions depending on the temperature, charge-carrier density, and field strength, which is required for a proper description of organic devices.
  • Item
    A coarse‐grained electrothermal model for organic semiconductor devices
    (Chichester, West Sussex : Wiley, 2022) Glitzky, Annegret; Liero, Matthias; Nika, Grigor
    We derive a coarse-grained model for the electrothermal interaction of organic semiconductors. The model combines stationary drift-diffusion- based electrothermal models with thermistor-type models on subregions of the device and suitable transmission conditions. Moreover, we prove existence of a solution using a regularization argument and Schauder's fixed point theorem. In doing so, we extend recent work by taking into account the statistical relation given by the Gauss–Fermi integral and mobility functions depending on the temperature, charge-carrier density, and field strength, which is required for a proper description of organic devices.
  • Item
    Analysis of a hybrid model for the electrothermal behavior of semiconductor heterostructures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Glitzky, Annegret; Liero, Matthias; Nika, Grigor
    We prove existence of a weak solution for a hybrid model for the electro-thermal behavior of semiconductor heterostructures. This hybrid model combines an electro-thermal model based on drift-diffusion with thermistor type models in different subregions of the semiconductor heterostructure. The proof uses a regularization method and Schauder's fixed point theorem. For boundary data compatible with thermodynamic equilibrium we verify, additionally, uniqueness. Moreover, we derive bounds and higher integrability properties for the electrostatic potential and the quasi Fermi potentials as well as the temperature.