Search Results

Now showing 1 - 10 of 30
  • Item
    Rigorous derivation of a plate theory in linear elastoplasticity via [Gamma]-convergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Liero, Matthias; Roche, Thomas
    This paper deals with dimension reduction in linearized elastoplasticity in the rate-independent case. The reference configuration of the elastoplastic body is given by a two-dimensional middle surface and a small but positive thickness. We derive a limiting model for the case in which the thickness of the plate tends to 0. This model contains membrane and plate deformations which are coupled via plastic strains. The convergence analysis is based on an abstract Gamma convergence theory for rate-independent evolution formulated in the framework of energetic solutions. This concept is based on an energy-storage functional and a dissipation functional, such that the notion of solution is phrased in terms of a stability condition and an energy balance.
  • Item
    The weighted energy-dissipation principle and evolutionary [Gamma]-convergence for doubly nonlinear problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Liero, Matthias; Melchionna, Stefano
    We consider a family of doubly nonlinear evolution equations that is given by families of convex dissipation potentials, nonconvex energy functionals, and external forces parametrized by a small parameter ε. For each of these problems, we introduce the so-called weighted energy-dissipation (WED) functional, whose minimizer correspond to solutions of an elliptic-in-time regularization of the target problems with regularization parameter δ. We investigate the relation between the Γ-convergence of the WED functionals and evolutionary Γ-convergence of the associated systems. More precisely, we deal with the limits δ→0, ε→0, as well as δ+ ε→0 either in the sense of Γ-convergence of functionals or in the sense of evolutionary Γ-convergence of functional-driven evolution problems, or both. Additionally, we provide some quantitative estimates on the rate of convergence for the limit ε→0, in the case of quadratic dissipation potentials and uniformly λ-convex energy functionals. Finally, we discuss a homogenization problem as an example of application.
  • Item
    An effective bulk-surface thermistor model for large-area organic light-emitting diodes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Glitzky, Annegret; Liero, Matthias; Nika, Grigor
    The existence of a weak solution for an effective system of partial differential equations describing the electrothermal behavior of large-area organic light-emitting diodes (OLEDs) is proved. The effective system consists of the heat equation in the three-dimensional bulk glass substrate and two semi-linear equations for the current flow through the electrodes coupled to algebraic equations for the continuity of the electrical fluxes through the organic layers. The electrical problem is formulated on the (curvilinear) surface of the glass substrate where the OLED is mounted. The source terms in the heat equation are due to Joule heating and are hence concentrated on the part of the boundary where the current-flow equation is posed. The existence of weak solutions to the effective system is proved via Schauder's fixed-point theorem. Moreover, since the heat sources are a priori only in $L^1$, the concept of entropy solutions is used.
  • Item
    On gradient structures for Markov chains and the passage to Wasserstein gradient flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Disser, Karoline; Liero, Matthias
    We study the approximation of Wasserstein gradient structures by their finite-dimensional analog. We show that simple finite-volume discretizations of the linear Fokker-Planck equation exhibit the recently established entropic gradient-flow structure for reversible Markov chains. Then we reprove the convergence of the discrete scheme in the limit of vanishing mesh size using only the involved gradient-flow structures. In particular, we make no use of the linearity of the equations nor of the fact that the Fokker-Planck equation is of second order.
  • Item
    Dimension reduction of thermistor models for large-area organic light-emitting diodes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Glitzky, Annegret; Liero, Matthias; Nika, Grigor
    An effective system of partial differential equations describing the heat and current flow through a thin organic light-emitting diode (OLED) mounted on a glass substrate is rigorously derived from a recently introduced fully three-dimensional φ(x)-Laplace thermistor model. The OLED consists of several thin layers that scale differently with respect to the multiscale parameter ε > 0 which is the ratio between the total thickness and the lateral extent of the OLED. Starting point of the derivation is a rescaled formulation of the current-flow equation in the OLED for the driving potential and the heat equation in OLED and glass substrate with Joule heat term concentrated in the OLED. Assuming physically motivated scalings in the electrical flux functions, uniform a priori bounds are derived for the solutions of the three-dimensional system which facilitates the extraction of converging subsequences with limits that are identified as solutions of a dimension reduced system. In the latter, the effective current-flow equation is given by two semilinear equations in the two-dimensional cross-sections of the electrodes and algebraic equations for the continuity of the electrical fluxes through the organic layers. The effective heat equation is formulated only in the glass substrate with Joule heat term on the part of the boundary where the OLED is mounted.
  • Item
    Homogenization of Cahn-Hilliard-type equations via evolutionary Gamma-convergence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Liero, Matthias; Reichelt, Sina
    In this paper we discuss two approaches to evolutionary Gamma-convergence of gradient systems in Hilbert spaces. The formulation of the gradient system is based on two functionals, namely the energy functional and the dissipation potential, which allows us to employ Gamma-convergence methods. In the first approach we consider families of uniformly convex energy functionals such that the limit passage of the time-dependent problems can be based on the theory of evolutionary variational inequalities as developed by Daneri and Savare 2010. The second approach uses the equivalent formulation of the gradient system via the energy-dissipation principle and follows the ideas of Sandier and Serfaty 2004. We apply both approaches to rigorously derive homogenization limits for Cahn-Hilliard-type equations. Using the method of weak and strong two-scale convergence via periodic unfolding, we show that the energy and dissipation functionals Gamma-converge. In conclusion, we will give specific examples for the applicability of each of the two approaches.
  • Item
    Homogenization of a porous intercalation electrode with phase separation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Heida, Martin; Landstorfer, Manuel; Liero, Matthias
    In this work, we derive a new model framework for a porous intercalation electrode with a phase separating active material upon lithium intercalation. We start from a microscopic model consisting of transport equations for lithium ions in an electrolyte phase and intercalated lithium in a solid active phase. Both are coupled through a Neumann--boundary condition modeling the lithium intercalation reaction. The active material phase is considered to be phase separating upon lithium intercalation. We assume that the porous material is a given periodic microstructure and perform analytical homogenization. Effectively, the microscopic model consists of a diffusion and a Cahn--Hilliard equation, whereas the limit model consists of a diffusion and an Allen--Cahn equation. Thus we observe a Cahn--Hilliard to Allen--Cahn transition during the upscaling process. In the sense of gradient flows, the transition goes in hand with a change in the underlying metric structure of the PDE system.
  • Item
    Optimal transport in competition with reaction: The Hellinger-Kantorovich distance and geodesic curves
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Liero, Matthias; Mielke, Alexander; Savaré, Giuseppe
    We discuss a new notion of distance on the space of finite and nonnegative measures on Omega C Rd, which we call Hellinger-Kantorovich distance. It can be seen as an infconvolution of the well-known Kantorovich-Wasserstein distance and the Hellinger-Kakutani distance. The new distance is based on a dynamical formulation given by an Onsager operator that is the sum of a Wasserstein diffusion part and an additional reaction part describing the generation and absorption of mass. We present a full characterization of the distance and some of its properties. In particular, the distance can be equivalently described by an optimal transport problem on the cone space over the underlying space Omega. We give a construction of geodesic curves and discuss examples and their general properties.
  • Item
    Rate independent Kurzweil processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Krejčí, Pavel; Liero, Matthias
    The Kurzweil integral technique is applied to a class of rate independent processes with convex energy and discontinuous inputs. We prove existence, uniqueness, and continuous data dependence of solutions in $BV$ spaces. It is shown that in the context of elastoplasticity, the Kurzweil solutions coincide with natural limits of viscous regularizations when the viscosity coefficient tends to zero. The discontinuities produce an additional positive dissipation term, which is not homogeneous of degree one.
  • Item
    A coarse-grained electrothermal model for organic semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Glitzky, Annegret; Liero, Matthias; Nika, Grigor
    We derive a coarse-grained model for the electrothermal interaction of organic semiconductors. The model combines stationary drift-diffusion based electrothermal models with thermistor type models on subregions of the device and suitable transmission conditions. Moreover, we prove existence of a solution using a regularization argument and Schauder's fixed point theorem. In doing so, we extend recent work by taking into account the statistical relation given by the Gauss--Fermi integral and mobility functions depending on the temperature, charge-carrier density, and field strength, which is required for a proper description of organic devices.