Search Results

Now showing 1 - 4 of 4
  • Item
    An effective bulk-surface thermistor model for large-area organic light-emitting diodes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Glitzky, Annegret; Liero, Matthias; Nika, Grigor
    The existence of a weak solution for an effective system of partial differential equations describing the electrothermal behavior of large-area organic light-emitting diodes (OLEDs) is proved. The effective system consists of the heat equation in the three-dimensional bulk glass substrate and two semi-linear equations for the current flow through the electrodes coupled to algebraic equations for the continuity of the electrical fluxes through the organic layers. The electrical problem is formulated on the (curvilinear) surface of the glass substrate where the OLED is mounted. The source terms in the heat equation are due to Joule heating and are hence concentrated on the part of the boundary where the current-flow equation is posed. The existence of weak solutions to the effective system is proved via Schauder's fixed-point theorem. Moreover, since the heat sources are a priori only in $L^1$, the concept of entropy solutions is used.
  • Item
    Analysis of p(x)-Laplace thermistor models describing the electrothermal behavior of organic semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Glitzky, Annegret; Liero, Matthias
    We study a stationary thermistor model describing the electrothermal behavior of organic semiconductor devices featuring non-Ohmic current-voltage laws and selfheating effects. The coupled system consists of the current-flow equation for the electrostatic potential and the heat equation with Joule heating term as source. The self-heating in the device is modeled by an Arrhenius-like temperature dependency of the electrical conductivity. Moreover, the non-Ohmic electrical behavior is modeled by a power law such that the electrical conductivity depends nonlinearly on the electric field. Notably, we allow for functional substructures with different power laws, which gives rise to a p(x)-Laplace-type problem with piecewise constant exponent. We prove the existence and boundedness of solutions in the two-dimensional case. The crucial point is to establish the higher integrability of the gradient of the electrostatic potential to tackle the Joule heating term. The proof of the improved regularity is based on Caccioppoli-type estimates, Poincaré inequalities, and a Gehring-type Lemma for the p(x)-Laplacian. Finally, Schauders fixed-point theorem is used to show the existence of solutions.
  • Item
    p-Laplace thermistor modeling of electrothermal feedback in organic semiconductors
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Liero, Matthias; Koprucki, Thomas; Fischer, Axel; Scholz, Reinhard; Glitzky, Annegret
    In large-area Organic Light-Emitting Diodes (OLEDs) spatially inhomogeneous luminance at high power due to inhomogeneous current flow and electrothermal feedback can be observed. To describe these self-heating effects in organic semiconductors we present a stationary thermistor model based on the heat equation for the temperature coupled to a p-Laplace-type equation for the electrostatic potential with mixed boundary conditions. The p-Laplacian describes the non-Ohmic electrical behavior of the organic material. Moreover, an Arrhenius-like temperature dependency of the electrical conductivity is considered. We introduce a finite-volume scheme for the system and discuss its relation to recent network models for OLEDs. In two spatial dimensions we derive a priori estimates for the temperature and the electrostatic potential and prove the existence of a weak solution by Schauder's fixed point theorem.
  • Item
    3D electrothermal simulations of organic LEDs showing negative differential resistance
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Liero, Matthias; Fuhrmann, Jürgen; Glitzky, Annegret; Koprucki, Thomas; Fischer, Axel; Reineke, Sebastian
    Organic semiconductor devices show a pronounced interplay between temperature-activated conductivity and self-heating which in particular causes inhomogeneities in the brightness of large-area OLEDs at high power. We consider a 3D thermistor model based on partial differential equations for the electrothermal behavior of organic devices and introduce an extension to multiple layers with nonlinear conductivity laws, which also take the diode-like behavior in recombination zones into account. We present a numerical simulation study for a red OLED using a finite-volume approximation of this model. The appearance of S-shaped current-voltage characteristics with regions of negative differential resistance in a measured device can be quantitatively reproduced. Furthermore, this simulation study reveals a propagation of spatial zones of negative differential resistance in the electron and hole transport layers toward the contact.