Search Results

Now showing 1 - 2 of 2
  • Item
    Multimodel assessment of flood characteristics in four large river basins at global warming of 1.5, 2.0 and 3.0 K above the pre-industrial level
    (Bristol : IOP Publ., 2018) Huang, Shaochun; Kumar, Rohini; Rakovec, Oldrich; Aich, Valentin; Wang, Xiaoyan; Samaniego, Luis; Liersch, Stefan; Krysanova, Valentina
    This study assesses the flood characteristics (timing, magnitude and frequency) in the pre-industrial and historical periods, and analyzes climate change impacts on floods at the warming levels of 1.5, 2.0 and 3.0 K above the pre-industrial level in four large river basins as required by the Paris agreement. Three well-established hydrological models (HMs) were forced with bias-corrected outputs from four global climate models (GCMs) for the pre-industrial, historical and future periods until 2100. The long pre-industrial and historical periods were subdivided into multiple 31-year subperiods to investigate the natural variability. The mean flood characteristics in the pre-industrial period were derived from the large ensemble based on all GCMs, HMs and 31-year subperiods, and compared to the ensemble means in the historical and future periods. In general, the variance of simulated flood characteristics is quite large in the pre-industrial and historical periods. Mostly GCMs and HMs contribute to the variance, especially for flood timing and magnitude, while the selection of 31-year subperiods is an important source of variance for flood frequency. The comparison between the ensemble means shows that there are already some changes in flood characteristics between the pre-industrial and historical periods. There is a clear shift towards earlier flooding for the Rhine (1.5 K scenario) and Upper Mississippi (3.0 K scenario). The flood magnitudes show a substantial increase in the Rhine and Upper Yellow only under the 3.0 K scenario. The floods are projected to occur more frequently in the Rhine under the 1.5 and 2.0 K scenarios, and less frequently in the Upper Mississippi under all scenarios.
  • Item
    Management scenarios of the Grand Ethiopian Renaissance Dam and their impacts under recent and future climates
    (Basel : MDPI, 2017) Liersch, Stefan; Koch, Hagen; Hattermann, Fred Fokko
    Close to the border with Sudan, Ethiopia is currently building the largest hydroelectric power plant in Africa with a storage volume corresponding to approximately 1.5 years of the mean discharges of the Blue Nile. This endeavor is controversially debated in the public and the scientific literature. Contributing to this discussion, by shading some light on climate change issues, an eco-hydrological model, equipped with a reservoir module, was applied to investigate downstream hydrological impacts during filling and regular operation, the latter considering climate change projected by an ensemble of 10 global and regional climate models. Our results show that at the earliest after 20 months, the dam could produce hydroelectric power. Full supply level may be reached after four years or not at all, depending on filling policies and assumptions of seepage rates. Under recent hydro-climatic conditions, the dam may produce 13 TWh −a , which is below the envisaged target of 15.7 TWh −a . The ensemble mean suggests slightly increasing hydropower production in the future. Almost independently of the operation rules, the highly variable discharge regime will be significantly altered to a regime with almost equal flows each month. Achieving a win-win situation for all riparian countries requires a high level of cooperation in managing the Eastern Nile water resources.