Search Results

Now showing 1 - 10 of 11
  • Item
    Water resources planning in the Upper Niger River basin: Are there gaps between water demand and supply?
    (Amsterdam [u.a.] : Elsevier, 2019) Liersch, Stefan; Fournet, Samuel; Koch, Hagen; Djibo, Abdouramane Gado; Reinhardt, Julia; Kortlandt, Joyce; Van Weert, Frank; Seidou, Ousmane; Klop, Erik; Baker, Chris; Hattermann, Fred F.
    Study region: The Upper Niger and Bani River basins in West Africa. Study focus: The growing demand for food, water, and energy led Mali and Guinea to develop ambitious hydropower and irrigation plans, including the construction of a new dam and the extension of irrigation schemes. These two developments will take place upstream of sensible ecosystem hotspots while the feasibility of development plans in terms of water availability and sustainability is questionable. Where agricultural development in past decades focused mainly on intensifying dry-season crops cultivation, future plans include extension in both the dry and wet seasons. New hydrological insights for the region: Today's irrigation demand corresponds to 7% of the average annual Niger discharge and could account to one third in 2045. An extension of irrigated agriculture is possible in the wet season, while extending dry-season cropping would be largely compromised with the one major existing Sélingué dam. An additional large Fomi or Moussako dam would not completely satisfy dry-season irrigation demands in the 2045 scenario but would reduce the estimated supply gap from 36% to 14%. However, discharge peaks may decrease by 40% reducing the inundated area in the Inner Niger Delta by 21%, while average annual discharge decreases by 30%. Sustainable development should therefore consider investments in water-saving irrigation and management practices to enhance the feasibility of the envisaged irrigation plans instead of completely relying on the construction of a flow regime altering dam. © 2019 The Authors
  • Item
    Physico-chemical and bacteriological quality of groundwater in a rural area of Western Niger: A case study of Bonkoukou
    (London : IWA Publishing, 2020) Adamou, Hassane; Ibrahim, Boubacar; Salack, Seyni; Adamou, Rabani; Sanfo, Safietou; Liersch, Stefan
    The precariousness of the rural population in Africa is often symbolized by the lack of potable and safe drinking water. This study investigates the physico-chemical and bacteriological characteristics of 32 water samples with respect to WHO standards. The water samples were collected from wells, boreholes and small drinking water supply systems (DWS) in and around the township of Bonkoukou (Niger). The Water Quality Index (WQI) tool was used to assess the overall water quality with different physico-chemical parameters. Where the pH of the samples was acceptable, the samples showed higher levels of mineralization and deoxygenation. Overall, the samples were slightly hard, chlorinated and sulfated but much alkaline and contained nitrate and nitrite ions 2-16 times higher than the WHO standards. The use of WQI shows that samples in the DWS are safe for drinking. Samples coming from wells are the most polluted (58.50%) compared to those taken from boreholes (53.00%), while the percentage of samples from boreholes, unfit for drinking, is higher (41.00%) than that of the samples taken from wells (25.00%). Moreover, water in this area was characterized by the presence of total germs indicating bacteriological pollution. Hence, for the supply of safe drinking water to the larger number of people in such a rural area, the capacity of actual DWS must be improved and widespread. © 2020 The Authors.
  • Item
    Effects of model calibration on hydrological and water resources management simulations under climate change in a semi-arid watershed
    (Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Koch, Hagen; Silva, Ana Lígia Chaves; Liersch, Stefan; de Azevedo, José Roberto Gonçalves; Hattermann, Fred Fokko
    Semi-arid regions are known for erratic precipitation patterns with significant effects on the hydrological cycle and water resources availability. High temporal and spatial variation in precipitation causes large variability in runoff over short durations. Due to low soil water storage capacity, base flow is often missing and rivers fall dry for long periods. Because of its climatic characteristics, the semi-arid north-eastern region of Brazil is prone to droughts. To counter these, reservoirs were built to ensure water supply during dry months. This paper describes problems and solutions when calibrating and validating the eco-hydrological model SWIM for semi-arid regions on the example of the Pajeú watershed in north-eastern Brazil. The model was calibrated to river discharge data before the year 1983, with no or little effects of water management, applying a simple and an enhanced approach. Uncertainties result mainly from the meteorological data and observed river discharges. After model calibration water management was included in the simulations. Observed and simulated reservoir volumes and river discharges are compared. The calibrated and validated models were used to simulate the impacts of climate change on hydrological processes and water resources management using data of two representative concentration pathways (RCP) and five earth system models (ESM). The differences in changes in natural and managed mean discharges are negligible (< 5%) under RCP8.5 but notable (> 5%) under RCP2.6 for the ESM ensemble mean. In semi-arid catchments, the enhanced approach should be preferred, because in addition to discharge, a second variable, here evapotranspiration, is considered for model validation. © 2020, The Author(s).
  • Item
    A new approach for assessing synergies of solar and wind power: implications for West Africa
    (Bristol : IOP Publ., 2018) Sterl, Sebastian; Liersch, Stefan; Koch, Hagen; Lipzig, Nicole P M van; Thiery, Wim
    West African countries' energy and climate policies show a pronounced focus on decarbonising power supply through renewable electricity (RE) generation. In particular, most West African states explicitly focus on hybrid mixes of variable renewable power sources—solar, wind and hydropower—in their targets for the electricity sector. Hydropower, the main current RE resource in West Africa, is strongly sensitive to monsoon rainfall variability, which has led to power crises in the past. Therefore, solar and wind power could play a stronger role in the future as countries move to power systems with high shares of RE. Considering the policy focus on diversified RE portfolios, there is a strong need to provide climate services for assessing how these resources could function together in a power mix. In this study, climate data from the state-of-the-art ERA5 reanalysis is used to assess the synergies of solar photovoltaic (PV) and wind power potential in West Africa at hourly resolution. A new metric, the stability coefficient Cstab, is developed to quantify the synergies of solar PV and wind power for achieving a balanced power output and limiting storage needs. Using this metric, it is demonstrated that there is potential for exploiting hybrid solar/wind power in a larger area of West Africa, covering more important centers of population and closer to existing grid structures, than would be suggested by average maps of solar and wind resource availability or capacity factor for the region. The results of this study highlight why multi-scale temporal synergies of power mixes should be considered in RE system planning from the start.
  • Item
    Multimodel assessment of flood characteristics in four large river basins at global warming of 1.5, 2.0 and 3.0 K above the pre-industrial level
    (Bristol : IOP Publ., 2018) Huang, Shaochun; Kumar, Rohini; Rakovec, Oldrich; Aich, Valentin; Wang, Xiaoyan; Samaniego, Luis; Liersch, Stefan; Krysanova, Valentina
    This study assesses the flood characteristics (timing, magnitude and frequency) in the pre-industrial and historical periods, and analyzes climate change impacts on floods at the warming levels of 1.5, 2.0 and 3.0 K above the pre-industrial level in four large river basins as required by the Paris agreement. Three well-established hydrological models (HMs) were forced with bias-corrected outputs from four global climate models (GCMs) for the pre-industrial, historical and future periods until 2100. The long pre-industrial and historical periods were subdivided into multiple 31-year subperiods to investigate the natural variability. The mean flood characteristics in the pre-industrial period were derived from the large ensemble based on all GCMs, HMs and 31-year subperiods, and compared to the ensemble means in the historical and future periods. In general, the variance of simulated flood characteristics is quite large in the pre-industrial and historical periods. Mostly GCMs and HMs contribute to the variance, especially for flood timing and magnitude, while the selection of 31-year subperiods is an important source of variance for flood frequency. The comparison between the ensemble means shows that there are already some changes in flood characteristics between the pre-industrial and historical periods. There is a clear shift towards earlier flooding for the Rhine (1.5 K scenario) and Upper Mississippi (3.0 K scenario). The flood magnitudes show a substantial increase in the Rhine and Upper Yellow only under the 3.0 K scenario. The floods are projected to occur more frequently in the Rhine under the 1.5 and 2.0 K scenarios, and less frequently in the Upper Mississippi under all scenarios.
  • Item
    Simulation of flood hazard and risk in the Danube basin with the Future Danube Model
    (Amsterdam : Elsevier, 2018) Hattermann, Fred F.; Wortmann, Michel; Liersch, Stefan; Toumi, Ralf; Sparks, Nathan; Genillard, Christopher; Schröter, Kai; Steinhausen, Max; Gyalai-Korpos, Miklós; Máté, Kinga; Hayes, Ben; del Rocío Rivas López, María; Rácz, Tibor; Nielsen, Marie R.; Kaspersen, Per S.; Drews, Martin
    Major river and flash flood events have accumulated in Central and Eastern Europe over the last decade reminding the public as well as the insurance sector that climate related risks are likely to become even more damaging and prevalent as climate patterns change. However, information about current and future hydro-climatic extremes is often not available. The Future Danube Model (FDM) is an end-user driven multi-hazard and risk model suite for the Danube region that has been developed to provide climate services related to perils such as heavy precipitation, heat waves, floods, and droughts under recent and scenario conditions. As a result, it provides spatially consistent information on extreme events and natural resources throughout the entire Danube catchment. It can be used to quantify climate risks, to support the implementation of the EU framework directives, for climate informed urban and land use planning, water resources management, and for climate proofing of large scale infrastructural planning including cost benefit analysis. The model suite consists of five individual and exchangeable modules: a weather and climate module, a hydrological module, a risk module, an adaptation module, and a web-based visualization module. They are linked in such a way that output from one module can either be used standalone or fed into subsequent modules. The utility of the tool has been tested by experts and stakeholders. The results show that more and more intense hydrological extremes are likely to occur under climate scenario conditions, e.g. higher order floods may occur more frequently.
  • Item
    Systematic evaluation of scenario assessments supporting sustainable integrated natural resources management: Evidence from four case studies in Africa
    (Wolfville : The Resilience Alliance, 2018) Reinhardt, Julia; Liersch, Stefan; Abdeladhim, Mohamed Arbi; Diallo, Mori; Dickens, Chris; Fournet, Samuel; Hattermann, Fred Fokko; Kabaseke, Clovis; Muhumuza, Moses; Mul, Marloes L.; Pilz, Tobias; Otto, lona M.; Walz, Ariane
    Scenarios have become a key tool for supporting sustainability research on regional and global change. In this study we evaluate four regional scenario assessments: first, to explore a number of research challenges related to sustainability science and, second, to contribute to sustainability research in the specific case studies. The four case studies used commonly applied scenario approaches that are (i) a story and simulation approach with stakeholder participation in the Oum Zessar watershed, Tunisia, (ii) a participatory scenario exploration in the Rwenzori region, Uganda, (iii) a model-based prepolicy study in the Inner Niger Delta, Mali, and (iv) a model coupling-based scenario analysis in upper Thukela basin, South Africa. The scenario assessments are evaluated against a set of known challenges in sustainability science, with each challenge represented by two indicators, complemented by a survey carried out on the perception of the scenario assessments within the case study regions. The results show that all types of scenario assessments address many sustainability challenges, but that the more complex ones based on story and simulation and model coupling are the most comprehensive. The study highlights the need to investigate abrupt system changes as well as governmental and political factors as important sources of uncertainty. For an in-depth analysis of these issues, the use of qualitative approaches and an active engagement of local stakeholders are suggested. Studying ecological thresholds for the regional scale is recommended to support research on regional sustainability. The evaluation of the scenario processes and outcomes by local researchers indicates the most transparent scenario assessments as the most useful. Focused, straightforward, yet iterative scenario assessments can be very relevant by contributing information to selected sustainability problems.
  • Item
    Improving the Accuracy of Hydrodynamic Simulations in Data Scarce Environments Using Bayesian Model Averaging: A Case Study of the Inner Niger Delta, Mali, West Africa
    (Basel : MDPI, 2019) Haque, Md Mominul; Seidou, Ousmane; Mohammadian, Abdolmajid; Djibo, Abdouramane Gado; Liersch, Stefan; Fournet, Samuel; Karam, Sara; Perera, Edangodage Duminda Pradeep; Kleynhans, Martin
    In this paper, the study area was the Inner Niger Delta (IND) in Mali, West Africa. The IND is threatened by climate change, increasing irrigation, and dam operations. 2D hydrodynamic modelling was used to simulate water levels, discharge, and inundation extent in the IND. Three different digital elevation models (DEM) (SRTM, MERIT, and a DEM derived from satellite images were used as a source of elevation data. Six different models were created, with different sources of elevation data and different downstream boundary conditions. Given that the performance of the models varies according to the location in the IND, the variable under consideration and the performance criteria, Bayesian Model Averaging (BMA) was used to assess the relative performance of each of the six models. The BMA weights, along with deterministic performance measures, such as the Nash Sutcliffe coefficient (NS) and the Pearson’s correlation coefficient (r), provide quantitative evidence as to which model is the best when simulating a particular hydraulic variable at a particular location. After the models were combined with BMA, both discharge and water levels could be simulated with reasonable precision (NS > 0.8). The results of this work can contribute to the more efficient management of water resources in the IND.
  • Item
    Spatial-Explicit Climate Change Vulnerability Assessments Based on Impact Chains. Findings from a Case Study in Burundi
    (Basel : MDPI, 2020) Schneiderbauer, Stefan; Baunach, Daniel; Pedoth, Lydia; Renner, Kathrin; Fritzsche, Kerstin; Bollin, Christina; Pregnolato, Marco; Zebisch, Marc; Liersch, Stefan; Rivas López, María del Rocío; Ruzima, Salvator
    Climate change vulnerability assessments are an essential instrument to identify regions most vulnerable to adverse impacts of climate change and to determine appropriate adaptation measures. Vulnerability assessments directly support countries in developing adaptation plans and in identifying possible measures to reduce adverse consequences of changing climate conditions. Against this background, this paper describes a vulnerability assessment using an integrated and participatory approach that builds on standardized working steps of previously developed ‘Vulnerability Sourcebook’ guidelines. The backbone of this approach is impact chains as a conceptual model of cause–effect relationships as well as a structured selection of indicators according to the three main components of vulnerability, namely exposure, sensitivity and adaptive capacity. We illustrate our approach by reporting the results of a vulnerability assessment conducted in Burundi focusing on climate change impacts on water and soil resources. Our work covers two analysis scales: a national assessment with the aim to identify climate change ‘hotspot regions’ through vulnerability mapping; and a local assessment aiming at identifying local-specific drivers of vulnerability and appropriate adaptation measures. Referring to this vulnerability assessment in Burundi, we discuss the potentials and constraints of the approach. We stress the need to involve stakeholders in every step of the assessment and to communicate limitations and uncertainties of the applied methods, indicators and maps in order to increase the comprehension of the approach and the acceptance of the results by different stakeholders. The study proved the practical usability of the approach at the national level by the selection of three particularly vulnerable areas. The results at a local scale supported the identification of adaption measures through intensive engagement of local rural populations.
  • Item
    Management scenarios of the Grand Ethiopian Renaissance Dam and their impacts under recent and future climates
    (Basel : MDPI, 2017) Liersch, Stefan; Koch, Hagen; Hattermann, Fred Fokko
    Close to the border with Sudan, Ethiopia is currently building the largest hydroelectric power plant in Africa with a storage volume corresponding to approximately 1.5 years of the mean discharges of the Blue Nile. This endeavor is controversially debated in the public and the scientific literature. Contributing to this discussion, by shading some light on climate change issues, an eco-hydrological model, equipped with a reservoir module, was applied to investigate downstream hydrological impacts during filling and regular operation, the latter considering climate change projected by an ensemble of 10 global and regional climate models. Our results show that at the earliest after 20 months, the dam could produce hydroelectric power. Full supply level may be reached after four years or not at all, depending on filling policies and assumptions of seepage rates. Under recent hydro-climatic conditions, the dam may produce 13 TWh −a , which is below the envisaged target of 15.7 TWh −a . The ensemble mean suggests slightly increasing hydropower production in the future. Almost independently of the operation rules, the highly variable discharge regime will be significantly altered to a regime with almost equal flows each month. Achieving a win-win situation for all riparian countries requires a high level of cooperation in managing the Eastern Nile water resources.