Search Results

Now showing 1 - 2 of 2
  • Item
    Adaptive elimination of synchronization in coupled oscillator
    (Bristol : Institute of Physics Publishing, 2017) Zhou, S.; Ji, P.; Zhou, Q.; Feng, J.; Kurths, J.; Lin, W.
    We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto's oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.
  • Item
    Characterizing time series: When Granger causality triggers complex networks
    (Bristol : Institute of Physics Publishing, 2012) Ge, T.; Cui, Y.; Lin, W.; Kurths, J.; Liu, C.
    In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIH 7 human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.