Search Results

Now showing 1 - 2 of 2
  • Item
    Generation of optical chirality patterns with plane waves, evanescent waves and surface plasmon waves
    (Washington, DC : Soc., 2020) Zhan, Jiwei; Huang, Shiang-Yu; Lin, Zhan-Hong; Huang, Jer-Shing
    We systematically investigate the generation of optical chirality patterns by applying the superposition of two waves in three scenarios, namely free-space plane waves, evanescent waves of totally reflected light at dielectric interface and propagating surface plasmon waves on a metallic surface. In each scenario, the general analytical solution of the optical chirality pattern is derived for different polarization states and propagating directions of the two waves. The analytical solutions are verified by numerical simulations. Spatially structured optical chirality patterns can be generated in all scenarios if the incident polarization states and propagation directions are correctly chosen. Optical chirality enhancement can be obtained from the constructive interference of free-space circularly polarized light or enhanced evanescent waves of totally reflected light. Surface plasmon waves do not provide enhanced optical chirality unless the near-field intensity enhancement is sufficiently high. The structured optical chirality patterns may find applications in chirality sorting, chiral imaging and circular dichroism spectroscopy. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
  • Item
    Fabrication of self-assembled spherical Gold Particles by pulsed UV Laser Treatment
    (Berlin : Nature Publishing, 2018) Schmidl, Gabriele; Jia, Guobin; Gawlik, Annett; Kreusch, Jonathan; Schmidl, Frank; Dellith, Jan; Dathe, André; Lin, Zhan-Hong; Huang, Jer-Shing; Plentz, Jonathan
    We report on the fabrication of spherical Au spheres by pulsed laser treatment using a KrF excimer laser (248 nm, 25 ns) under ambient conditions as a fast and high throughput fabrication technique. The presented experiments were realized using initial Au layers of 100 nm thickness deposited on optically transparent and low cost Borofloat glass or single-crystalline SrTiO3 substrates, respectively. High (111)-orientation and smoothness (RMS ≈ 1 nm) are the properties of the deposited Au layers before laser treatment. After laser treatment, spheres with size distribution ranging from hundreds of nanometers up to several micrometers were produced. Single-particle scattering spectra with distinct plasmonic resonance peaks are presented to reveal the critical role of optimal irradiation parameters in the process of laser induced particle self-assembly. The variation of irradiation parameters like fluence and number of laser pulses influences the melting, dewetting and solidification process of the Au layers and thus the formation of extremely well shaped spherical particles. The gold layers on Borofloat glass and SrTiO3 are found to show a slightly different behavior under laser treatment. We also discuss the effect of substrates.We report on the fabrication of spherical Au spheres by pulsed laser treatment using a KrF excimer laser (248 nm, 25 ns) under ambient conditions as a fast and high throughput fabrication technique. The presented experiments were realized using initial Au layers of 100 nm thickness deposited on optically transparent and low cost Borofloat glass or single-crystalline SrTiO3 substrates, respectively. High (111)-orientation and smoothness (RMS ≈ 1 nm) are the properties of the deposited Au layers before laser treatment. After laser treatment, spheres with size distribution ranging from hundreds of nanometers up to several micrometers were produced. Single-particle scattering spectra with distinct plasmonic resonance peaks are presented to reveal the critical role of optimal irradiation parameters in the process of laser induced particle self-assembly. The variation of irradiation parameters like fluence and number of laser pulses influences the melting, dewetting and solidification process of the Au layers and thus the formation of extremely well shaped spherical particles. The gold layers on Borofloat glass and SrTiO3 are found to show a slightly different behavior under laser treatment. We also discuss the effect of substrates.