Search Results

Now showing 1 - 4 of 4
  • Item
    Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier-Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Schroeder, Philipp W.; Lehrenfeld, Christoph; Linke, Alexander; Lube, Gerd
    Inf-sup stable FEM applied to time-dependent incompressible Navier-Stokes flows are considered. The focus lies on robust estimates for the kinetic and dissipation energies in a twofold sense. Firstly, pressure-robustness ensures the fulfilment of a fundamental invariance principle and velocity error estimates are not corrupted by the pressure approximability. Secondly, Re-semirobustness means that constants appearing on the right-hand side of kinetic and dissipation energy error estimates (including Gronwall constants) do not explicitly depend on the Reynolds number. Such estimates rely on the essential regularity assumption which is discussed in detail. In the sense of best practice, we review and establish pressure- and Re-semirobust estimates for pointwise divergence-free H1-conforming FEM (like Scott-Vogelius pairs or certain isogeometric based FEM) and pointwise divergence-free H(div)-conforming discontinuous Galerkin FEM. For convection-dominated problems, the latter naturally includes an upwind stabilisation for the velocity which is not gradient-based.
  • Item
    On really locking-free mixed finite element methods for the transient incompressible Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Ahmed, Naveed; Linke, Alexander; Merdon, Christian
    Inf-sup stable mixed methods for the steady incompressible Stokes equations that relax the divergence constraint are often claimed to deliver locking-free discretizations. However, this relaxation leads to a pressure-dependent contribution in the velocity error, which is proportional to the inverse of the viscosity, thus giving rise to a (different) locking phenomenon. However, a recently proposed modification of the right hand side alone leads to a discretization that is really locking-free, i.e., its velocity error converges with optimal order and is independent of the pressure and the smallness of the viscosity. In this contribution, we extend this approach to the transient incompressible Stokes equations, where besides the right hand side also the velocity time derivative requires an improved space discretization. Semi-discrete and fully-discrete a-priori velocity and pressure error estimates are derived, which show beautiful robustness properties. Two numerical examples illustrate the superior accuracy of pressure-robust space discretizations in the case of small viscosities.
  • Item
    Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Linke, Alexander; Merdon, Christian; Neilan, Michael; Neumann, Felix
    Nearly all classical inf-sup stable mixed finite element methods for the incompressible Stokes equations are not pressure-robust, i.e., the velocity error is dependent on the pressure. However, recent results show that pressure-robustness can be recovered by a non-standard discretization of the right hand side alone. This variational crime introduces a consistency error in the method which can be estimated in a straightforward manner provided that the exact velocity solution is sufficiently smooth. The purpose of this paper is to analyze the pressurerobust scheme with low regularity. The numerical analysis applies divergence-free H1-conforming Stokes finite element methods as a theoretical tool. As an example, pressure-robust velocity and pressure a-priori error estimates will be presented for the (first order) nonconforming CrouzeixRaviart element. A key feature in the analysis is the dependence of the errors on the Helmholtz projector of the right hand side data, and not on the entire data term. Numerical examples illustrate the theoretical results.
  • Item
    Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier-Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Linke, Alexander; Merdon, Christian
    Recently, it was understood how to repair a certain L2-orthogonality of discretely-divergence-free vector fields and gradient fields such that the velocity error of inf-sup stable discretizations for the incompressible Stokes equations becomes pressure-independent. These new pressure-robust Stokes discretizations deliver a small velocity error, whenever the continuous velocity field can be well approximated on a given grid. On the contrary, classical inf-sup stable Stokes discretizations can guarantee a small velocity error only, when both the velocity and the pressure field can be approximated well, simultaneously. In this contribution, pressure-robustness is extended to the time-dependent Navier-Stokes equations. In particular, steady and time-dependent potential flows are shown to build an entire class of benchmarks, where pressure-robust discretizations can outperform classical approaches significantly. Speedups will be explained by a new theoretical concept, the discrete Helmholtz projector of an inf-sup stable discretization. Moreover, different discrete nonlinear convection terms are discussed, and skew-symmetric pressure-robust discretizations are proposed.