Search Results

Now showing 1 - 3 of 3
  • Item
    Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Lederer, Philip L.; Linke, Alexander; Merdon, Christian; Schöberl, Joachim
    Classical inf-sup stable mixed finite elements for the incompressible (Navier-)Stokes equations are not pressure-robust, i.e., their velocity errors depend on the continuous pressure. However, a modification only in the right hand side of a Stokes discretization is able to reestablish pressure-robustness, as shown recently for several inf-sup stable Stokes elements with discontinuous discrete pressures. In this contribution, this idea is extended to low and high order Taylor-Hood and mini elements, which have continuous discrete pressures. For the modification of the right hand side a velocity reconstruction operator is constructed that maps discretely divergence-free test functions to exactly divergence-free ones. The reconstruction is based on local H (div)-conforming flux equilibration on vertex patches, and fulfills certain orthogonality properties to provide consistency and optimal a-priori error estimates. Numerical examples for the incompressible Stokes and Navier-Stokes equations confirm that the new pressure-robust Taylor-Hood and mini elements converge with optimal order and outperform significantly the classical versions of those elements when the continuous pressure is comparably large.
  • Item
    Optimal L2 velocity error estimate for a modified pressure-robust Crouzeix-Raviart Stokes element
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Linke, Alexander; Merdon, Christian; Wollner, Winnifried
    Recently, a novel approach for the robust discretization of the incompressible Stokes equations was proposed that slightly modifies the nonconforming Crouzeix-Raviart element such that its velocity error becomes pressure-independent. The modification results in an O(h) consistency error that allows straightforward proofs for the optimal convergence of the discrete energy norm of the velocity and of the L2 norm of the pressure. However, though the optimal convergence of the velocity in the L2 norm was observed numerically, it appeared to be nontrivial to prove. In this contribution, this gap is closed. Moreover, the dependence of the energy error estimates on the discrete inf-sup constant is traced in detail, which shows that classical error estimates are extremely pessimistic on domains with large aspect ratios. Numer-ical experiments in 2D and 3D illustrate the theoretical findings.
  • Item
    An analogue of grad-div stabilization in nonconforming methods for incompressible flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Akbas, Mine; Linke, Alexander; Rebholz, Leo G.; Schroeder, Philipp W.
    Grad-div stabilization is a classical remedy in conforming mixed finite element methods for incompressible flow problems, for mitigating velocity errors that are sometimes called poor mass conservation. Such errors arise due to the relaxation of the divergence constraint in classical mixed methods, and are excited whenever the spacial discretization has to deal with comparably large and complicated pressures. In this contribution, an analogue of grad-div stabilization is presented for nonconforming flow discretizations of Discontinuous Galerkin or nonconforming finite element type. Here the key is the penalization of the jumps of the normal velocities over facets of the triangulation, which controls the measure-valued part of the distributional divergence of the discrete velocity solution. Furthermore, we characterize the limit for arbitrarily large penalization parameters, which shows that the proposed nonconforming Discontinuous Galerkin methods remain robust and accurate in this limit. Several numerical examples illustrate the theory and show their relevance for the simulation of practical, nontrivial flows.