Search Results

Now showing 1 - 3 of 3
  • Item
    Robust arbitrary order mixed finite element methods for the incompressible Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Linke, Alexander; Matthies, Gunar; Tobiska, Lutz
    Standard mixed finite element methods for the incompressible Navier-Stokes equations that relax the divergence constraint are not robust against large irrotational forces in the momentum balance and the velocity error depends on the continuous pressure. This robustness issue can be completely cured by using divergence-free mixed finite elements which deliver pressure-independent velocity error estimates. However, the construction of H1-conforming, divergence-free mixed finite element methods is rather difficult. Instead, we present a novel approach for the construction of arbitrary order mixed finite element methods which deliver pressure-independent velocity errors. The approach does not change the trial functions but replaces discretely divergence-free test functions in some operators of the weak formulation by divergence-free ones. This modification is applied to inf-sup stable conforming and nonconforming mixed finite element methods of arbitrary order in two and three dimensions. Optimal estimates for the incompressible Stokes equations are proved for the H1 and L2 errors of the velocity and the L2 error of the pressure. Moreover, both velocity errors are pressure-independent, demonstrating the improved robustness. Several numerical examples illustrate the results.
  • Item
    Guaranteed energy error estimators for a modified robust Crouzeix-Raviart Stokes element
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Linke, Alexander; Merdon, Christian
    This paper provides guaranteed upper energy error bounds for a modified lowest-order nonconforming Crouzeix-Raviart finite element method for the Stokes equations. The modification from [A. Linke 2014, On the role of the Helmholtz-decomposition in mixed methods for incompressible flows and a new variational crime] is based on the observation that only the divergence-free part of the right-hand side should balance the vector Laplacian. The new method has optimal energy error estimates and can lead to errors that are smaller by several magnitudes, since the estimates are pressure-independent. An efficient a posteriori velocity error estimator for the modified method also should involve only the divergence-free part of the right-hand side. Some designs to approximate the Helmholtz projector are compared and verified by numerical benchmark examples. They show that guaranteed error control for the modified method is possible and almost as sharp as for the unmodified method.
  • Item
    Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Linke, Alexander; Merdon, Christian; Neilan, Michael; Neumann, Felix
    Nearly all classical inf-sup stable mixed finite element methods for the incompressible Stokes equations are not pressure-robust, i.e., the velocity error is dependent on the pressure. However, recent results show that pressure-robustness can be recovered by a non-standard discretization of the right hand side alone. This variational crime introduces a consistency error in the method which can be estimated in a straightforward manner provided that the exact velocity solution is sufficiently smooth. The purpose of this paper is to analyze the pressurerobust scheme with low regularity. The numerical analysis applies divergence-free H1-conforming Stokes finite element methods as a theoretical tool. As an example, pressure-robust velocity and pressure a-priori error estimates will be presented for the (first order) nonconforming CrouzeixRaviart element. A key feature in the analysis is the dependence of the errors on the Helmholtz projector of the right hand side data, and not on the entire data term. Numerical examples illustrate the theoretical results.