Search Results

Now showing 1 - 7 of 7
  • Item
    Collision in a cross-shaped domain
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Linke, Alexander
    In the numerical simulation of the incompressible Navier-Stokes equations different numerical instabilities can occur. While instability in the discrete velocity due to dominant convection and instability in the discrete pressure due to a vanishing discrete LBB constant are well-known, instability in the discrete velocity due to a poor mass conservation at high Reynolds numbers sometimes seems to be underestimated. At least, when using conforming Galerkin mixed finite element methods like the Taylor-Hood element, the classical grad-div stabilization for enhancing discrete mass conservation is often neglected in practical computations. Though simple academic flow problems showing the importance of mass conservation are well-known, these examples differ from practically relevant ones, since specially designed force vectors are prescribed. Therefore we present a simple steady Navier-Stokes problem in two space dimensions at Reynolds number 1024, a colliding flow in a cross-shaped domain, where the instability of poor mass conservation is studied in detail and where no force vector is prescribed.
  • Item
    On the divergence constraint in mixed finite element methods for incompressible flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) John, Volker; Linke, Alexander; Merdon, Christian; Neilan, Michael; Rebholz, Leo G.
    The divergence constraint of the incompressible Navier-Stokes equations is revisited in the mixed finite element framework. While many stable and convergent mixed elements have been developed throughout the past four decades, most classical methods relax the divergence constraint and only enforce the condition discretely. As a result, these methods introduce a pressure-dependent consistency error which can potentially pollute the computed velocity. These methods are not robust in the sense that a contribution from the right-hand side, which in fluences only the pressure in the continuous equations, impacts both velocity and pressure in the discrete equations. This paper reviews the theory and practical implications of relaxing the divergence constraint. Several approaches for improving the discrete mass balance or even for computing divergence-free solutions will be discussed: grad-div stabilization, higher order mixed methods derived on the basis of an exact de Rham complex, H(div)-conforming finite elements, and mixed methods with an appropriate reconstruction of the test functions. Numerical examples illustrate both the potential effects of using non-robust discretizations and the improvements obtained by utilizing pressure-robust discretizations.
  • Item
    Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Lederer, Philip L.; Linke, Alexander; Merdon, Christian; Schöberl, Joachim
    Classical inf-sup stable mixed finite elements for the incompressible (Navier-)Stokes equations are not pressure-robust, i.e., their velocity errors depend on the continuous pressure. However, a modification only in the right hand side of a Stokes discretization is able to reestablish pressure-robustness, as shown recently for several inf-sup stable Stokes elements with discontinuous discrete pressures. In this contribution, this idea is extended to low and high order Taylor-Hood and mini elements, which have continuous discrete pressures. For the modification of the right hand side a velocity reconstruction operator is constructed that maps discretely divergence-free test functions to exactly divergence-free ones. The reconstruction is based on local H (div)-conforming flux equilibration on vertex patches, and fulfills certain orthogonality properties to provide consistency and optimal a-priori error estimates. Numerical examples for the incompressible Stokes and Navier-Stokes equations confirm that the new pressure-robust Taylor-Hood and mini elements converge with optimal order and outperform significantly the classical versions of those elements when the continuous pressure is comparably large.
  • Item
    On the parameter choice in grad-div stabilization for incompressible flow problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Jenkins, Eleanor W.; John, Volker; Linke, Alexander; Rebholz, Leo G.
    Grad-div stabilization has been proved to be a very useful tool in discretizations of incompressible flow problems. Standard error analysis for inf-sup stable conforming pairs of finite element spaces predicts that the stabilization parameter should be optimally chosen to be O(1). This paper revisits this choice for the Stokes equations on the basis of minimizing the H1( ) error of the velocity and the L2( ) error of the pressure. It turns out, by applying a refined error analysis, that the optimal parameter choice is more subtle than known so far in the literature. It depends on the used norm, the solution, the family of finite element spaces, and the type of mesh. Depending on the situation, the optimal stabilization parameter might range from being very small to very large. The analytic results are supported by numerical examples.
  • Item
    Optimal L2 velocity error estimate for a modified pressure-robust Crouzeix-Raviart Stokes element
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Linke, Alexander; Merdon, Christian; Wollner, Winnifried
    Recently, a novel approach for the robust discretization of the incompressible Stokes equations was proposed that slightly modifies the nonconforming Crouzeix-Raviart element such that its velocity error becomes pressure-independent. The modification results in an O(h) consistency error that allows straightforward proofs for the optimal convergence of the discrete energy norm of the velocity and of the L2 norm of the pressure. However, though the optimal convergence of the velocity in the L2 norm was observed numerically, it appeared to be nontrivial to prove. In this contribution, this gap is closed. Moreover, the dependence of the energy error estimates on the discrete inf-sup constant is traced in detail, which shows that classical error estimates are extremely pessimistic on domains with large aspect ratios. Numer-ical experiments in 2D and 3D illustrate the theoretical findings.
  • Item
    Inverse modeling of thin layer flow cells for detection of solubility, transport and reaction coefficients from experimental data
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Fuhrmann, Jürgen; Linke, Alexander; Merdon, Christian; Neumann, Felix; Streckenbach, Timo; Baltruschat, Helmut; Khodayari, Mehdi
    Thin layer flow cells are used in electrochemical research as experimental devices which allow to perform investigations of electrocatalytic surface reactions under controlled conditions using reasonably small electrolyte volumes. The paper introduces a general approach to simulate the complete cell using accurate numerical simulation of the coupled flow, transport and reaction processes in a flow cell. The approach is based on a mass conservative coupling of a divergence-free finite element method for fluid flow and a stable finite volume method for mass transport. It allows to perform stable and efficient forward simulations that comply with the physical bounds namely mass conservation and maximum principles for the involved species. In this context, several recent approaches to obtain divergence-free velocities from finite element simulations are discussed. In order to perform parameter identification, the forward simulation method is coupled to standard optimization tools. After an assessment of the inverse modeling approach using known real-istic data, first results of the identification of solubility and transport data for O2 dissolved in organic electrolytes are presented. A plausibility study for a more complex situation with surface reactions concludes the paper and shows possible extensions of the scope of the presented numerical tools.
  • Item
    Pressure-induced locking in mixed methods for time-dependent (Navier)Stokes equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Linke, Alexander; Rebholz, Leo G.
    We consider inf-sup stable mixed methods for the time-dependent incompressible Stokes and NavierStokes equations, extending earlier work on the steady (Navier-)Stokes Problem. A locking phenomenon is identified for classical inf-sup stable methods like the Taylor-Hood or the Crouzeix-Raviart elements by a novel, elegant and simple numerical analysis and corresponding numerical experiments, whenever the momentum balance is dominated by forces of a gradient type. More precisely, a reduction of the L2 convergence order for high order methods, and even a complete stall of the L2 convergence order for lowest-order methods on preasymptotic meshes is predicted by the analysis and practically observed. On the other hand, it is also shown that (structure-preserving) pressure-robust mixed methods do not suffer from this locking phenomenon, even if they are of lowest-order. A connection to well-balanced schemes for (vectorial) hyperbolic conservation laws like the shallow water or the compressible Euler equations is made.