Search Results

Now showing 1 - 2 of 2
  • Item
    A Unified Research Data Infrastructure for Catalysis Research – Challenges and Concepts
    (Weinheim : Wiley-VCH, 2021) Wulf, Christoph; Beller, Matthias; Boenisch, Thomas; Deutschmann, Olaf; Hanf, Schirin; Kockmann, Norbert; Kraehnert, Ralph; Oezaslan, Mehtap; Palkovits, Stefan; Schimmler, Sonja; Schunk, Stephan A.; Wagemann, Kurt; Linke, David
    Modern research methods produce large amounts of scientifically valuable data. Tools to process and analyze such data have advanced rapidly. Yet, access to large amounts of high-quality data remains limited in many fields, including catalysis research. Implementing the concept of FAIR data (Findable, Accessible, Interoperable, Reusable) in the catalysis community would improve this situation dramatically. The German NFDI initiative (National Research Data Infrastructure) aims to create a unique research data infrastructure covering all scientific disciplines. One of the consortia, NFDI4Cat, proposes a concept that serves all aspects and fields of catalysis research. We present a perspective on the challenging path ahead. Starting out from the current state, research needs are identified. A vision for a integrating all research data along the catalysis value chain, from molecule to chemical process, is developed. Respective core development topics are discussed, including ontologies, metadata, required infrastructure, IP, and the embedding into research community. This Concept paper aims to inspire not only researchers in the catalysis field, but to spark similar efforts also in other disciplines and on an international level. © 2021 The Authors. ChemCatChem published by Wiley-VCH GmbH
  • Item
    Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation
    ([London] : Nature Publishing Group UK, 2018) Zhang, Yaoyuan; Zhao, Yun; Otroshchenko, Tatiana; Lund, Henrik; Pohl, Marga-Martina; Rodemerck, Uwe; Linke, David; Jiao, Haijun; Jiang, Guiyuan; Kondratenko, Evgenii V.
    Due to the complexity of heterogeneous catalysts, identification of active sites and the ways for their experimental design are not inherently straightforward but important for tailored catalyst preparation. The present study reveals the active sites for efficient C–H bond activation in C1–C4 alkanes over ZrO2 free of any metals or metal oxides usually catalysing this reaction. Quantum chemical calculations suggest that two Zr cations located at an oxygen vacancy are responsible for the homolytic C–H bond dissociation. This pathway differs from that reported for other metal oxides used for alkane activation, where metal cation and neighbouring lattice oxygen form the active site. The concentration of anion vacancies in ZrO2 can be controlled through adjusting the crystallite size. Accordingly designed ZrO2 shows industrially relevant activity and durability in non-oxidative propane dehydrogenation and performs superior to state-of-the-art catalysts possessing Pt, CrOx, GaOx or VOx species.