Search Results

Now showing 1 - 7 of 7
  • Item
    Prospects of Coupled Organic-Inorganic Nanostructures for Charge and Energy Transfer Applications
    (Weinheim : Wiley-VCH, 2021) Steiner, Anja Maria; Lissel, Franziska; Fery, Andreas; Lauth, Jannika; Scheele, Marcus
    We review the field of organic–inorganic nanocomposites with a focus on materials that exhibit a significant degree of electronic coupling across the hybrid interface. These nanocomposites undergo a variety of charge and energy transfer processes, enabling optoelectronic applications in devices which exploit singlet fission, triplet energy harvesting, photon upconversion or hot charge carrier transfer. We discuss the physical chemistry of the most common organic and inorganic components. Based on those we derive synthesis and assembly strategies and design criteria on material and device level with a focus on photovoltaics, spin memories or optical upconverters. We conclude that future research in the field should be directed towards an improved understanding of the binding motif and molecular orientation at the hybrid interface. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Conjugated Polymers as a New Class of Dual-Mode Matrices for MALDI Mass Spectrometry and Imaging
    (Washington, DC : ACS Publications, 2018) Horatz, Kilian; Giampà, Marco; Karpov, Yevhen; Sahre, Karin; Bednarz, Hanna; Kiriy, Anton; Voit, Brigitte; Niehaus, Karsten; Hadjichristidis, Nikos; Michels, Dominik L.; Lissel, Franziska
    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) and MALDI MS imaging are ubiquitous analytical methods in medical, pharmaceutical, biological, and environmental research. Currently, there is a strong interest in the investigation of low molecular weight compounds (LMWCs), especially to trace and understand metabolic pathways, requiring the development of new matrix systems that have favorable optical properties and a high ionization efficiency and that are MALDI silent in the LMWC area. In this paper, five conjugated polymers, poly{[N,N'-bis(2-octyldodecyl)-naphtalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'(2,2'-bithiophene)} (PNDI(T2)), poly(3-dodecylthiophene-2,5-diyl) (P3DDT), poly{[2,3-bis(3-octyloxyphenyl)quinoxaline-5,8-diyl]-alt-(thiophene-2,5-diyl)} (PTQ1), poly{[N,N'-bis(2-octyldodecyl)-isoindigo-5,5'-diyl]-alt-5,5'(2,2'-bithiophene)} (PII(T2)), and poly(9,9-di-n-octylfluorenyl-2,7-diyl) (P9OFl) are investigated as matrices. The polymers have a strong optical absorption, are solution processable, and can be coated into thin films, allowing a vast reduction in the amount of matrix used. All investigated polymers function as matrices in both positive and negative mode MALDI, classifying them as rare dual-mode matrices, and show a very good analyte ionization ability in both modes. PNDI(T2), P3DDT, PTQ1, and PII(T2) are MALDI silent in the full measurement range (>m/z = 150k), except at high laser intensities. In MALDI MS experiments of single analytes and a complex biological sample, the performance of the polymers was found to be as good as two commonly used matrices (2,5-DHB for positive and 9AA for negative mode measurements). The detection limit of two standard analytes was determined as being below 164 pmol for reserpine and below 245 pmol for cholic acid. Additionally P3DDT was used successfully in first MALDI MS imaging experiments allowing the visualization of the tissue morphology of rat brain sections.
  • Item
    STM-induced ring closure of vinylheptafulvene molecular dipole switches on Au(111)
    (Cambridge : Royal Society of Chemistry, 2022) Au-Yeung, Kwan Ho; Kühne, Tim; Aiboudi, Oumaima; Sarkar, Suchetana; Guskova, Olga; Ryndyk, Dmitry A.; Heine, Thomas; Lissel, Franziska; Moresco, Francesca
    Dihydroazulene/vinylheptafulvene pairs are known as molecular dipole switches that undergo a ring-opening/-closure reaction by UV irradiation or thermal excitation. Herein, we show that the ring-closure reaction of a single vinylheptafulvene adsorbed on the Au(111) surface can be induced by voltage pulses from the tip of a scanning tunneling microscope. This cyclization is accompanied by the elimination of HCN, as confirmed by simulations. When inducing lateral movements by applying voltage pulses with the STM tip, we observe that the response of the single molecules changes with the ring closing reaction. This behaviour is discussed by comparing the dipole moment and the charge distribution of the open and closed forms on the surface.
  • Item
    Poly(3-hexylthiophene)s Functionalized with N-Heterocyclic Carbenes as Robust and Conductive Ligands for the Stabilization of Gold Nanoparticles
    (Weinheim : Wiley-VCH, 2020) Sun, Ningwei; Zhang, Shi-Tong; Simon, Frank; Steiner, Anja Maria; Schubert, Jonas; Du, Yixuan; Qiao, Zhi; Fery, Andreas; Lissel, Franziska
    Recently, N-heterocyclic carbenes (NHCs) are explored as anchor groups to bind organic ligands to colloidal gold (i.e. gold nanoparticles, Au NPs), yet these efforts are confined to non-conjugated ligands so far—that is, focused solely on exploiting the stability aspect. Using NHCs to link Au NPs and electronically active organic components, for example, conjugated polymers (CPs), will allow capitalizing on both the stability as well as the inherent conductivity of the NHC anchors. Here, we report three types of Br-NHC-Au-X (X=Cl, Br) complexes, which, when used as starting points for Kumada polymerizations, yield regioregular poly(3-hexylthiophenes)-NHC-Au (P3HTs-NHC-Au) with narrow molecular weight distributions. The corresponding NPs are obtained via direct reduction and show excellent thermal as well as redox stability. The NHC anchors enable electron delocalization over the gold/CP interface, resulting in an improved electrochromic response behavior in comparison with P3HT-NHC-Au. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    MALDI Matrices for the Analysis of Low Molecular Weight Compounds: Rational Design, Challenges and Perspectives
    (Weinheim : Wiley-VCH, 2021) Qiao, Zhi; Lissel, Franziska
    The analysis of low molecular weight (LMW) compounds is of great interest to detect small pharmaceutical drugs rapidly and sensitively, or to trace and understand metabolic pathways. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) plays a central role in the analysis of high molecular weight (bio)molecules. However, its application for LMW compounds is restricted by spectral interferences in the low m/z region, which are produced by conventional organic matrices. Several strategies regarding sample preparation have been investigated to overcome this problem. A different rationale is centred on developing new matrices which not only meet the fundamental requirements of good absorption and high ionization efficiency, but are also vacuum stable and “MALDI silent”, i. e., do not give matrix-related signals in the LMW area. This review gives an overview on the rational design strategies used to develop matrix systems for the analysis of LMW compounds, focusing on (i) the modification of well-known matrices, (ii) the search for high molecular weight matrices, (iii) the development of binary, hybrid and nanomaterial-based matrices, (iv) the advance of reactive matrices and (v) the progress made regarding matrices for negative or dual polarity mode. © 2021 The Authors. Chemistry - An Asian Journal published by Wiley-VCH GmbH
  • Item
    Ultrasoft and High-Mobility Block Copolymers for Skin-Compatible Electronics
    (Weinheim : Wiley-VCH, 2020) Ditte, Kristina; Perez, Jonathan; Chae, Soosang; Hambsch, Mike; Al-Hussein, Mahmoud; Komber, Hartmut; Formanek, Peter; Mannsfeld, Stefan C.B.; Fery, Andreas; Kiriy, Anton; Lissel, Franziska
    Polymer semiconductors (PSCs) are an essential component of organic field-effect transistors (OFETs), but their potential for stretchable electronics is limited by their brittleness and failure susceptibility upon strain. Herein, a covalent connection of two state-of-the-art polymers—semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) and elastomeric poly(dimethylsiloxane) (PDMS)—in a single triblock copolymer (TBC) chain is reported, which enables high charge carrier mobility and low modulus in one system. Three TBCs containing up to 65 wt% PDMS were obtained, and the TBC with 65 wt% PDMS content exhibits mobilities up to 0.1 cm2 V−1 s−1, in the range of the fully conjugated reference polymer PDPP-TT (0.7 cm2 V−1 s−1). The TBC is ultrasoft with a low elastic modulus (5 MPa) in the range of mammalian tissue. The TBC exhibits an excellent stretchability and extraordinary durability, fully maintaining the initial electric conductivity in a doped state after 1500 cycles to 50% strain. © 2020 The Authors. Advanced Materials published by Wiley-VCH GmbH
  • Item
    Charge Carrier Mobility Improvement in Diketopyrrolopyrrole Block-Copolymers by Shear Coating
    (Basel : MDPI, 2021) Ditte, Kristina; Kiriy, Nataliya; Perez, Jonathan; Hambsch, Mike; Mannsfeld, Stefan C.B.; Krupskaya, Yulia; Maragani, Ramesh; Voit, Brigitte; Lissel, Franziska
    Shear coating is a promising deposition method for upscaling device fabrication and enabling high throughput, and is furthermore suitable for translating to roll-to-roll processing. Although common polymer semiconductors (PSCs) are solution processible, they are still prone to mechanical failure upon stretching, limiting applications in e.g., electronic skin and health monitoring. Progress made towards mechanically compliant PSCs, e.g., the incorporation of soft segments into the polymer backbone, could not only allow such applications, but also benefit advanced fabrication methods, like roll-to-roll printing on flexible substrates, to produce the targeted devices. Tri-block copolymers (TBCs), consisting of an inner rigid semiconducting poly-diketo-pyrrolopyrrole-thienothiophene (PDPP-TT) block flanked by two soft elastomeric poly(dimethylsiloxane) (PDMS) chains, maintain good charge transport properties, while being mechanically soft and flexible. Potentially aiming at the fabrication of TBC-based wearable electronics by means of cost-efficient and scalable deposition methods (e.g., blade-coating), a tolerance of the electrical performance of the TBCs to the shear speed was investigated. Herein, we demonstrate that such TBCs can be deposited at high shear speeds (film formation up to a speed of 10 mm s−1). While such high speeds result in increased film thickness, no degradation of the electrical performance was observed, as was frequently reported for polymer−based OFETs. Instead, high shear speeds even led to a small improvement in the electrical performance: mobility increased from 0.06 cm2 V−1 s−1 at 0.5 mm s−1 to 0.16 cm2 V−1 s−1 at 7 mm s−1 for the TBC with 24 wt% PDMS, and for the TBC containing 37 wt% PDMS from 0.05 cm2 V−1 s−1 at 0.5 mm s−1 to 0.13 cm2 V−1 s−1 at 7 mm s−1. Interestingly, the improvement of mobility is not accompanied by any significant changes in morphology.