Search Results

Now showing 1 - 3 of 3
  • Item
    Pinning and trapped field in MgB2- and MT-YBaCuO bulk superconductors manufactured under pressure
    (Bristol : IOP Publ., 2016) Prikhna, T.; Eisterer, M.; Chaud, X.; Weber, H.W.; Habisreuther, T.; Moshchil, V.; Kozyrev, A.; Shapovalov, A.; Gawalek, W.; Wu, M.; Litzkendorf, D.; Goldacker, W.; Sokolovsky, V.; Shaternik, V.; Rabier, J.; Joulain, A.; Grechnev, G.; Boutko, V.; Gusev, A.; Shaternik, A.; Barvitskiy, P.
    The relevant pinning centers of Abrikosov vortices in MgB2-based materials are oxygen-enriched Mg-B-O inclusions or nanolayers and inclusions of MgBx (x>4) phases. The high critical current densities, jc, of 106 and 103A/cm2 at 1 and 8.5 T, respectively, at 20 K can be achieved in polycrystalline materials (prepared at 2 GPa) containing a large amount of admixed oxygen. Besides, oxygen can be incorporated into the MgB2 structure in small amounts (MgB1.5O0.5), which is supported by Auger studies and calculations of the DOS and the binding energy. The jc of melt textured YBa2Cu3O7-δ (or Y123)-based superconductors (MT-YBaCuO) depends not only on the perfectness of texture and the amount of oxygen in the Y123 structure, but also on the density of twins and micro-cracks formed during the oxygenation (due to shrinking of the c-lattice parameter). The density of twins and microcracks increases with the reduction of the distance between Y2BaCuO5 (Y211) inclusions in Y123. At 77 K jc=8·104 A/cm2 in self-field and jc=103 A/cm2 at 10 T were found in materials oxygenated at 16 MPa for 3 days with a density of twins of 22–35 per µm (thickness of the lamellae: 45-30 nm) and a density of micro-cracks of 200–280 per mm. Pinning can occur at the points of intersection between the Y123 twin planes and the Y211 inclusions. MTYBaCuO at 77 K can trap 1.4 T (38×38×17 mm, oxygenated at 0.1 MPa for 20 days) and 0.8 T (16 mm in diameter and 10 mm thick with 0.45 mm holes oxygenated at 10 MPa for 53 h). The sensitivity of MgB2 to magnetic field variations (flux jumps) complicates estimates of the trapped field. At 20 K 1.8 T was found for a block of 30 mm in diameter and a thickness of 7.5 mm and 1.5 T (if the magnetic field was increased at a rate of 0.1 T) for a ring with dimensions 24×18 mm and a thickness of 8 mm.
  • Item
    Modified powder-in-tube technique based on the consolidation processing of powder materials for fabricating specialty optical fibers
    (Basel : MDPI AG, 2014) Auguste, J.-L.; Humbert, G.; Leparmentier, S.; Kudinova, M.; Martin, P.-O.; Delaizir, G.; Schuster, K.; Litzkendorf, D.
    The objective of this paper is to demonstrate the interest of a consolidation process associated with the powder-in-tube technique in order to fabricate a long length of specialty optical fibers. This so-called Modified Powder-in-Tube (MPIT) process is very flexible and paves the way to multimaterial optical fiber fabrications with different core and cladding glassy materials. Another feature of this technique lies in the sintering of the preform under reducing or oxidizing atmosphere. The fabrication of such optical fibers implies different constraints that we have to deal with, namely chemical species diffusion or mechanical stress due to the mismatches between thermal expansion coefficients and working temperatures of the fiber materials. This paper focuses on preliminary results obtained with a lanthano-aluminosilicate glass used as the core material for the fabrication of all-glass fibers or specialty Photonic Crystal Fibers (PCFs). To complete the panel of original microstructures now available by the MPIT technique, we also present several optical fibers in which metallic particles or microwires are included into a silica-based matrix.
  • Item
    Superconductivity in multi-phase Mg-B-O compounds
    (Amsterdam [u.a.] : Elsevier, 2012) Prikhna, T.; Gawalek, W.; Eisterer, M.; Weber, H.W.; Noudem, J.; Sokolovsky, V.; Chaud, X.; Moshchil, V.; Karpets, M.; Kovylaev, V.; Borimskiy, A.; Tkach, V.; Kozyrev, A.; Kuznietsov, R.; Dellith, J.; Shmidt, C.; Basyuk, T.; Litzkendorf, D.; Karau, F.; Dittrich, U.; Tomsic, M.
    Structures of MgB2-based materials manufactured under pressure (up to 2 GPa) by different methods having high superconducting performance and connectivity are multiphase and contain different Mg-B-O compounds. Some oxygen can be incorporated into MgB2 and boron into MgO structures, MgBx (X=4-20) inclusions contain practically no oxygen. Regulating manufacturing temperature, pressure, introducing additions one can influence oxygen and boron distribution in the materials and thus, affect the formation, amount and sizes of Mg-B-O and MgBx inclusions and changing type of pinning, pinning force and so affect critical current density jc. The boron concentration increase in initial Mg and B mixture allows obtaining sample containing 88.5 wt% of MgB12 with Tc of 37.4 K (estimated magnetically).