Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

SESAM mode-locked Tm:Y2O3 ceramic laser

2022, Zhang, Ning, Liu, Shande, Wang, Zhanxin, Liu, Jian, Xu, Xiaodong, Xu, Jun, Wang, Jun, Liu, Peng, Ma, Jie, Shen, Deyuan, Tang, Dingyuan, Lin, Hui, Zhang, Jian, Chen, Weidong, Zhao, Yongguang, Griebner, Uwe, Petrov, Valentin

We demonstrate a widely tunable and passively mode-locked Tm:Y2O3 ceramic laser in-band pumped by a 1627-nm Raman fiber laser. A tuning range of 318 nm, from 1833 to 2151 nm, is obtained in the continuous-wave regime. The SESAM mode-locked laser produces Fourier-transform-limited pulses as short as 75 fs at ∼ 2.06 µm with an average output power of 0.26 W at 86.3 MHz. For longer pulse durations of 178 fs, an average power of 0.59 W is achieved with a laser efficiency of 29%. This is, to the best of our knowledge, the first mode-locked Tm:Y2O3 laser in the femtosecond regime. The spectroscopic properties and laser performance confirm that Tm:Y2O3 transparent ceramics are a promising gain material for ultrafast lasers at 2 µm.

Loading...
Thumbnail Image
Item

Watt-level femtosecond Tm-doped “mixed” sesquioxide ceramic laser in-band pumped by a Raman fiber laser at 1627 nm

2022, Zhang, Ning, Wang, Zhanxin, Liu, Shande, Jing, Wei, Huang, Hui, Huang, Zixuan, Tian, Kangzhen, Yang, Zhiyong, Zhao, Yongguang, Griebner, Uwe, Petrov, Valentin, Chen, Weidong

We report on a semiconductor saturable absorber mirror mode-locked Tm:(Lu,Sc)2O3 ceramic laser in-band pumped by a Raman fiber laser at 1627 nm. The nonlinear refractive index (n2) of the Tm:(Lu,Sc)2O3 ceramic has been measured to be 4.66 × 10-20 m2/W at 2000 nm. An average output power up to 1.02 W at 2060 nm is achieved for transform-limited 280-fs pulses at a repetition rate of 86.5 MHz, giving an optical efficiency with respect to the absorbed pump power of 36.4%. Pulses as short as 66 fs at 2076 nm are produced at the expense of output power (0.3 W), corresponding to a spectral bandwidth of 69 nm. The present work reveals the potential of Tm3+-doped sesquioxide transparent ceramics for power scaling of femtosecond mode-locked bulk lasers emitting in the 2-μm spectral range.