Search Results

Now showing 1 - 10 of 14
Loading...
Thumbnail Image
Item

The GGCMI Phase 2 experiment: Global gridded crop model simulations under uniform changes in CO2, temperature, water, and nitrogen levels (protocol version 1.0)

2020, Franke, James A., Müller, Christoph, Elliott, Joshua, Ruane, Alex C., Jägermeyr, Jonas, Balkovic, Juraj, Ciais, Philippe, Dury, Marie, Falloon, Pete D., Folberth, Christian, François, Louis, Hank, Tobias, Hoffmann, Munir, Izaurralde, R. Cesar, Jacquemin, Ingrid, Jones, Curtis, Khabarov, Nikolay, Koch, Marian, Li, Michelle, Liu, Wenfeng, Olin, Stefan, Phillips, Meridel, Pugh, Thomas A. M., Reddy, Ashwan, Wang, Xuhui, Williams, Karina, Zabel, Florian, Moyer, Elisabeth J.

Concerns about food security under climate change motivate efforts to better understand future changes in crop yields. Process-based crop models, which represent plant physiological and soil processes, are necessary tools for this purpose since they allow representing future climate and management conditions not sampled in the historical record and new locations to which cultivation may shift. However, process-based crop models differ in many critical details, and their responses to different interacting factors remain only poorly understood. The Global Gridded Crop Model Intercomparison (GGCMI) Phase 2 experiment, an activity of the Agricultural Model Intercomparison and Improvement Project (AgMIP), is designed to provide a systematic parameter sweep focused on climate change factors and their interaction with overall soil fertility, to allow both evaluating model behavior and emulating model responses in impact assessment tools. In this paper we describe the GGCMI Phase 2 experimental protocol and its simulation data archive. A total of 12 crop models simulate five crops with systematic uniform perturbations of historical climate, varying CO2, temperature, water supply, and applied nitrogen (“CTWN”) for rainfed and irrigated agriculture, and a second set of simulations represents a type of adaptation by allowing the adjustment of growing season length. We present some crop yield results to illustrate general characteristics of the simulations and potential uses of the GGCMI Phase 2 archive. For example, in cases without adaptation, modeled yields show robust decreases to warmer temperatures in almost all regions, with a nonlinear dependence that means yields in warmer baseline locations have greater temperature sensitivity. Inter-model uncertainty is qualitatively similar across all the four input dimensions but is largest in high-latitude regions where crops may be grown in the future.

Loading...
Thumbnail Image
Item

Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities

2022, Cinner, Joshua E, Caldwell, Iain R, Thiault, Lauric, Ben, John, Blanchard, Julia L, Coll, Marta, Diedrich, Amy, Eddy, Tyler D, Everett, Jason D, Folberth, Christian, Gascuel, Didier, Guiet, Jerome, Gurney, Georgina G, Heneghan, Ryan F, Jägermeyr, Jonas, Jiddawi, Narriman, Lahari, Rachael, Kuange, John, Liu, Wenfeng, Maury, Olivier, Müller, Christoph, Novaglio, Camilla, Palacios-Abrantes, Juliano, Petrik, Colleen M, Rabearisoa, Ando, Tittensor, Derek P, Wamukota, Andrew, Pollnac, Richard

Climate change is expected to profoundly affect key food production sectors, including fisheries and agriculture. However, the potential impacts of climate change on these sectors are rarely considered jointly, especially below national scales, which can mask substantial variability in how communities will be affected. Here, we combine socioeconomic surveys of 3,008 households and intersectoral multi-model simulation outputs to conduct a sub-national analysis of the potential impacts of climate change on fisheries and agriculture in 72 coastal communities across five Indo-Pacific countries (Indonesia, Madagascar, Papua New Guinea, Philippines, and Tanzania). Our study reveals three key findings: First, overall potential losses to fisheries are higher than potential losses to agriculture. Second, while most locations (> 2/3) will experience potential losses to both fisheries and agriculture simultaneously, climate change mitigation could reduce the proportion of places facing that double burden. Third, potential impacts are more likely in communities with lower socioeconomic status.

Loading...
Thumbnail Image
Item

Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale

2020, Li, Wei, Ciais, Philippe, Stehfest, Elke, van Vuuren, Detlef, Popp, Alexander, Arneth, Almut, Di Fulvio, Fulvio, Doelma, Jonathan, Humpenöder, Florian, Harper, Anna B., Park, Taejin, Makowski, David, Havlik, Petr, Obersteiner, Michael, Wang, Jingmeng, Krause, Andreas, Liu, Wenfeng

Most scenarios from integrated assessment models (IAMs) that project greenhouse gas emissions include the use of bioenergy as a means to reduce CO2 emissions or even to achieve negative emissions (together with CCS carbon capture and storage). The potential amount of CO2 that can be removed from the atmosphere depends, among others, on the yields of bioenergy crops, the land available to grow these crops and the efficiency with which CO2 produced by combustion is captured. While bioenergy crop yields can be simulated by models, estimates of the spatial distribution of bioenergy yields under current technology based on a large number of observations are currently lacking. In this study, a random-forest (RF) algorithm is used to upscale a bioenergy yield dataset of 3963 observations covering Miscanthus, switchgrass, eucalypt, poplar and willow using climatic and soil conditions as explanatory variables. The results are global yield maps of five important lignocellulosic bioenergy crops under current technology, climate and atmospheric CO2 conditions at a 0:5 0:5 spatial resolution. We also provide a combined "best bioenergy crop" yield map by selecting one of the five crop types with the highest yield in each of the grid cells, eucalypt and Miscanthus in most cases. The global median yield of the best crop is 16.3 tDMha1 yr1 (DM dry matter). High yields mainly occur in the Amazon region and southeastern Asia. We further compare our empirically derived maps with yield maps used in three IAMs and find that the median yields in our maps are 50% higher than those in the IAM maps. Our estimates of gridded bioenergy crop yields can be used to provide bioenergy yields for IAMs, to evaluate land surface models or to identify the most suitable lands for future bioenergy crop plantations. The 0:5 0:5 global maps for yields of different bioenergy crops and the best crop and for the best crop composition generated from this study can be download from https://doi.org/10.5281/zenodo.3274254 (Li, 2019). © 2019 Cambridge University Press. All rights reserved.

Loading...
Thumbnail Image
Item

Multimodel assessments of human and climate impacts on mean annual streamflow in China

2019, Liu, Xingcai, Liu, Wenfeng, Yang, Hong, Tang, Qiuhong, Flörke, Martina, Masaki, Yoshimitsu, Müller Schmied, Hannes, Ostberg, Sebastian, Pokhrel, Yadu, Satoh, Yusuke, Wada, Yoshihide

Human activities, as well as climate variability, have had increasing impacts on natural hydrological systems, particularly streamflow. However, quantitative assessments of these impacts are lacking on large scales. In this study, we use the simulations from six global hydrological models driven by three meteorological forcings to investigate direct human impact (DHI) and climate impact on streamflow in China. Results show that, in the sub-periods of 1971-1990 and 1991-2010, one-fifth to one-third of mean annual streamflow (MAF) was reduced due to DHI in northern basins, and much smaller ( 4 %) MAF was reduced in southern basins. From 1971-1990 to 1991-2010, total MAF changes range from-13%to 10%across basins wherein the relative contributions of DHI change and climate variability show distinct spatial patterns. DHI change caused decreases in MAF in 70% of river segments, but climate variability dominated the total MAF changes in 88% of river segments of China. In most northern basins, climate variability results in changes of-9% to 18% in MAF, while DHI change results in decreases of 2% to 8% in MAF. In contrast with the climate variability that may increase or decrease streamflow, DHI change almost always contributes to decreases in MAF over time, with water withdrawals supposedly being the major impact on streamflow. This quantitative assessment can be a reference for attribution of streamflow changes at large scales, despite remaining uncertainty. We highlight the significant DHI in northern basins and the necessity to modulate DHI through improved water management towards a better adaptation to future climate change. © 2019 Author(s).

Loading...
Thumbnail Image
Item

Potential yield simulated by global gridded crop models: using a process-based emulator to explain their differences

2021-3-23, Ringeval, Bruno, Müller, Christoph, Pugh, Thomas A. M., Mueller, Nathaniel D., Ciais, Philippe, Folberth, Christian, Liu, Wenfeng, Debaeke, Philippe, Pellerin, Sylvain

How global gridded crop models (GGCMs) differ in their simulation of potential yield and reasons for those differences have never been assessed. The GGCM Intercomparison (GGCMI) offers a good framework for this assessment. Here, we built an emulator (called SMM for simple mechanistic model) of GGCMs based on generic and simplified formalism. The SMM equations describe crop phenology by a sum of growing degree days, canopy radiation absorption by the Beer–Lambert law, and its conversion into aboveground biomass by a radiation use efficiency (RUE). We fitted the parameters of this emulator against gridded aboveground maize biomass at the end of the growing season simulated by eight different GGCMs in a given year (2000). Our assumption is that the simple set of equations of SMM, after calibration, could reproduce the response of most GGCMs so that differences between GGCMs can be attributed to the parameters related to processes captured by the emulator. Despite huge differences between GGCMs, we show that if we fit both a parameter describing the thermal requirement for leaf emergence by adjusting its value to each grid-point in space, as done by GGCM modellers following the GGCMI protocol, and a GGCM-dependent globally uniform RUE, then the simple set of equations of the SMM emulator is sufficient to reproduce the spatial distribution of the original aboveground biomass simulated by most GGCMs. The grain filling is simulated in SMM by considering a fixed-in-time fraction of net primary productivity allocated to the grains (frac) once a threshold in leaves number (nthresh) is reached. Once calibrated, these two parameters allow for the capture of the relationship between potential yield and final aboveground biomass of each GGCM. It is particularly important as the divergence among GGCMs is larger for yield than for aboveground biomass. Thus, we showed that the divergence between GGCMs can be summarized by the differences in a few parameters. Our simple but mechanistic model could also be an interesting tool to test new developments in order to improve the simulation of potential yield at the global scale.

Loading...
Thumbnail Image
Item

Crop productivity changes in 1.5 °C and 2 °C worlds under climate sensitivity uncertainty

2018, Schleussner, Carl-Friedrich, Deryng, Delphine, Müller, Christoph, Elliott, Joshua, Saeed, Fahad, Folberth, Christian, Liu, Wenfeng, Wang, Xuhui, Pugh, Thomas A. M., Thiery, Wim, Seneviratne, Sonia I., Rogelj, Joeri

Following the adoption of the Paris Agreement, there has been an increasing interest in quantifying impacts at discrete levels of global mean temperature (GMT) increase such as 1.5 °C and 2 °C above pre-industrial levels. Consequences of anthropogenic greenhouse gas emissions on agricultural productivity have direct and immediate relevance for human societies. Future crop yields will be affected by anthropogenic climate change as well as direct effects of emissions such as CO2 fertilization. At the same time, the climate sensitivity to future emissions is uncertain. Here we investigate the sensitivity of future crop yield projections with a set of global gridded crop models for four major staple crops at 1.5 °C and 2 °C warming above pre-industrial levels, as well as at different CO2 levels determined by similar probabilities to lead to 1.5 °C and 2 °C, using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts project. For the same CO2 forcing, we find consistent negative effects of half a degree warming on productivity in most world regions. Increasing CO2 concentrations consistent with these warming levels have potentially stronger but highly uncertain effects than 0.5 °C warming increments. Half a degree warming will also lead to more extreme low yields, in particular over tropical regions. Our results indicate that GMT change alone is insufficient to determine future impacts on crop productivity.

Loading...
Thumbnail Image
Item

Global gridded crop model evaluation: Benchmarking, skills, deficiencies and implications

2017, Müller, Christoph, Elliott, Joshua, Chryssanthacopoulos, James, Arneth, Almut, Balkovic, Juraj, Ciais, Philippe, Deryng, Delphine, Folberth, Christian, Glotter, Michael, Hoek, Steven, Iizumi, Toshichika, Izaurralde, Roberto C., Jones, Curtis, Khabarov, Nikolay, Lawrence, Peter, Liu, Wenfeng, Olin, Stefan, Pugh, Thomas A.M., Ray, Deepak K., Reddy, Ashwan, Rosenzweig, Cynthia, Ruane, Alex C., Sakurai, Gen, Schmid, Erwin, Skalsky, Rastislav, Song, Carol X., Wang, Xuhui, de Wit, Allard, Yang, Hong

Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.

Loading...
Thumbnail Image
Item

Global irrigation contribution to wheat and maize yield

2021, Wang, Xuhui, Müller, Christoph, Elliot, Joshua, Mueller, Nathaniel D., Ciais, Philippe, Jägermeyr, Jonas, Gerber, James, Dumas, Patrice, Wang, Chenzhi, Yang, Hui, Li, Laurent, Deryng, Delphine, Folberth, Christian, Liu, Wenfeng, Makowski, David, Olin, Stefan, Pugh, Thomas A. M., Reddy, Ashwan, Schmid, Erwin, Jeong, Sujong, Zhou, Feng, Piao, Shilong

Irrigation is the largest sector of human water use and an important option for increasing crop production and reducing drought impacts. However, the potential for irrigation to contribute to global crop yields remains uncertain. Here, we quantify this contribution for wheat and maize at global scale by developing a Bayesian framework integrating empirical estimates and gridded global crop models on new maps of the relative difference between attainable rainfed and irrigated yield (ΔY). At global scale, ΔY is 34 ± 9% for wheat and 22 ± 13% for maize, with large spatial differences driven more by patterns of precipitation than that of evaporative demand. Comparing irrigation demands with renewable water supply, we find 30–47% of contemporary rainfed agriculture of wheat and maize cannot achieve yield gap closure utilizing current river discharge, unless more water diversion projects are set in place, putting into question the potential of irrigation to mitigate climate change impacts.

Loading...
Thumbnail Image
Item

Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales

2020, Lange, Stefan, Volkholz, Jan, Geiger, Tobias, Zhao, Fang, Vega, Iliusi, Veldkamp, Ted, Reyer, Christopher P.O., Warszawski, Lila, Huber, Veronika, Jägermeyr, Jonas, Schewe, Jacob, Bresch, David N., Büchner, Matthias, Chang, Jinfeng, Ciais, Philippe, Dury, Marie, Emanuel, Kerry, Folberth, Christian, Gerten, Dieter, Gosling, Simon N., Grillakis, Manolis, Hanasaki, Naota, Henrot, Alexandra-Jane, Hickler, Thomas, Honda, Yasushi, Ito, Akihiko, Khabarov, Nikolay, Koutroulis, Aristeidis, Liu, Wenfeng, Müller, Christoph, Nishina, Kazuya, Ostberg, Sebastian, Müller Schmied, Hannes, Seneviratne, Sonia I., Stacke, Tobias, Steinkamp, Jörg, Thiery, Wim, Wada, Yoshihide, Willner, Sven, Yang, Hong, Yoshikawa, Minoru, Yue, Chao, Frieler, Katja

The extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2°C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. ©2020. The Authors.

Loading...
Thumbnail Image
Item

The GGCMI Phase 2 emulators: Global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)

2020, Franke, James A., Müller, Christoph, Elliott, Joshua, Ruane, Alex C., Jägermeyr, Jonas, Snyder, Abigail, Dury, Marie, Falloon, Pete D., Folberth, Christian, François, Louis, Hank, Tobias, Izaurralde, R. Cesar, Jacquemin, Ingrid, Jones, Curtis, Li, Michelle, Liu, Wenfeng, Olin, Stefan, Phillips, Meridel, Pugh, Thomas A. M., Reddy, Ashwan, Williams, Karina, Wang, Ziwei, Zabel, Florian, Moyer, Elisabeth J.

Statistical emulation allows combining advantageous features of statistical and process-based crop models for understanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI) Phase 2. The GGCMI Phase 2 experiment is designed with the explicit goal of producing a structured training dataset for emulator development that samples across four dimensions relevant to crop yields: Atmospheric carbon dioxide (CO2) concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assumptions: That growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The dataset allows emulating the climatological-mean yield response of all models with a simple polynomial in mean growing-season values. Climatological-mean yields are a central metric in climate change impact analysis; we show here that they can be captured without relying on interannual variations. In general, emulation errors are negligible relative to differences across crop models or even across climate model scenarios; errors become significant only in some marginal lands where crops are not currently grown. We demonstrate that the resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase 2 dataset is constructed with uniform CTWN offsets, suggesting that the effects of changes in temperature and precipitation distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and integrated assessment of climate impacts. © 2020 EDP Sciences. All rights reserved.